Sang-Min Jang

Learn More
Pax6 is a member of the Pax family of transcription factors that contains a DNA binding paired-box and homeobox domain. In animals, including humans, Pax6 plays a key role in development, regulating organogenesis of the eye and brain. The current data show that histone acetyltransferase Tip60 physically interacts with Pax6 in developing post-natal day 4(More)
As a transcription factor, p53 modulates several cellular responses including cell-cycle control, apoptosis, and differentiation. In this study, we have shown that an actin regulatory protein, gelsolin (GSN), can physically interact with p53. The nuclear localization of p53 is inhibited by GSN overexpression in hepatocarcinoma HepG2 cells. Additionally, we(More)
TIP60 can act as a transcriptional activator or a repressor depending on the cellular context. However, little is known about the role of the chromodomain in the functional regulation of TIP60. In this study, we found that TIP60 interacted with H3K4me3 in response to TNF-α signaling. TIP60 bound to H3K4me3 at the promoters of the NF-κB target genes IL6 and(More)
The nuclear factor-κB (NF-κB) family is involved in the expressions of numerous genes, in development, apoptosis, inflammatory responses, and oncogenesis. In this study we identified four NF-κB target genes that are modulated by TIP60. We also found that TIP60 interacts with the NF-κB RelA/p65 subunit and increases its transcriptional activity through(More)
The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses and can trigger apoptosis in many cell types, including neurons. In this study, we have shown that the Microtubule-Associated Protein 1B (MAP1B) light chain can interact with the tumor suppressor p53. We also demonstrate that both p53 and the MAP1B light chain(More)
p73 and p53 have been known to play an important role in cellular damage responses such as apoptosis. Although p73 is a structural and functional homolog of p53 tumor suppressor gene, much less is known about the mechanism of p73-induced apoptotic cell death. In this study, we demonstrate that p19(ras) interaction with p73beta amplifies p73beta-induced(More)
Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be(More)
PUMA is a crucial regulator of apoptotic cell death mediated by p53-dependent and p53-independent mechanisms. In many cancer cells, PUMA expression is induced in response to DNA-damaging reagent in a p53-dependent manner. However, few studies have investigated transcription factors that lead to the induction of PUMA expression via p53-independent apoptotic(More)
p19(ras) is an alternative splicing product of the proto-oncogene c-H-ras pre-mRNA. In this study, we identified a novel p19(ras)-binding protein, Neuron-Specific Enolase (NSE), using the yeast two-hybrid method. NSE is one of the enolase families that convert 2-phospho-d-glycerate (PGA) to phosphoenolpyruvate (PEP) in the glycolysis pathway. In both(More)
Caldesmon (CaD), which was originally identified as an actin-regulatory protein, is involved in the regulation of diverse actin-related signaling processes, including cell migration and proliferation, in various cells. The cellular function of CaD has been studied primarily in the smooth muscle system; nothing is known about its function in skeletal muscle(More)