Sang-Hyun Min

Learn More
AIMS The phosphatase of regenerating liver (PRL) family is related to tumorigenesis and metastasis in various cancer types. Its overexpression increases cell motility and proliferation via the downregulation of p21 expression. In a previous study, we reported that PRL-1 downregulates p53 and is a target gene of p53. In this study, we investigated whether a(More)
Thiazolidinedione class of anti-diabetic drugs which are known as peroxisome proliferator-activated receptor γ (PPARγ) ligands have been used to treat metabolic disorders, but thiazolidinediones can also cause several severe side effects, including congestive heart failure, fluid retention, and weight gain. In this study, we describe a novel synthetic PPARγ(More)
BACKGROUND Animal viruses such as enveloped virus carry multi-functional proteins in the virion that can mediate more than two distinct steps of a gene delivery process during the transfer of viral genome into host cells. We tested if the aspects of the viral gene delivery mechanism could be mimicked by forming composite formulae from multi-functional(More)
Fbw7 is the substrate recognition component of the Skp1-Cullin-F-box (SCF)-type E3 ligase complex and a well-characterized tumor suppressor that targets numerous oncoproteins for destruction. Genomic deletion or mutation of FBW7 has been frequently found in various types of human cancers; however, little is known about the upstream signaling pathway(s)(More)
The phosphatase of regenerating liver-3 (PRL-3) is a member of protein tyrosine phosphatases and whose deregulation is implicated in tumorigenesis and metastasis of many cancers. However, the underlying mechanism by which PRL-3 is regulated is not known. In this study, we identified the peptidyl prolyl cis/trans isomerase FK506-binding protein 38 (FKBP38)(More)
The unfolded protein response (UPR) regulates endoplasmic reticulum (ER) homeostasis and protects cells from ER stress. IRE1α is a central regulator of the UPR that activates the transcription factor XBP1s through an unconventional splicing mechanism using its endoribonuclease activity. IRE1α also cleaves certain mRNAs containing XBP1-like secondary(More)
AIM To avoid the limitation of the use of cationic polyethlenimine (PEI)-complexed plasmid DNA use for in vitro or in vivo gene delivery due to its cytotoxicity and lower efficiency in the presence of serum. METHODS A polyplex with decreased positive charge on the complex surface was designed. The PEI/DNA (PD) complexes coated with an anionic(More)
Due to their intracellular permeability, protein transduction domains (PTDs) have been widely used to deliver proteins and peptides to mammalian cells. However, their performance in gene delivery has been relatively poor. To improve the efficiency of PTD-mediated gene delivery, we synthesized a new peptide, KALA-Antp (K-Antp), which contains the sequences(More)
There is growing interest in identifying regulators of autophagy. The molecular mechanism underlying transforming growth factor-β activated kinase 1 (TAK1)-induced autophagy is poorly understood. We found that TAK1 inhibits p70 S6 kinase1 (S6K1) phosphorylation by interfering interaction of raptor with S6K1, thus inducing autophagy. The factors that(More)
Salmonella have been experimentally used as anti-cancer agents, because they show selective growth in tumours. In this study, we genetically modified attenuated Salmonella typhimurium to express and secrete interferon-gamma (IFN-γ) as a tumouricidal agent to enhance the therapeutic efficacy of Salmonella. IFN-γ was fused to the N-terminal region (residues(More)