Learn More
Formation of single-strand DNA (ssDNA) tails at a double-strand break (DSB) is a key step in homologous recombination and DNA-damage signaling. The enzyme(s) producing ssDNA at DSBs in eukaryotes remain unknown. We monitored 5'-strand resection at inducible DSB ends in yeast and identified proteins required for two stages of resection: initiation and(More)
Saccharomyces cells suffering a single unrepairable double-strand break (DSB) exhibit a long, but transient arrest at G2/M. hdf1 cells, lacking Ku70p, fail to escape from this RAD9/RAD17-dependent checkpoint. The effect of hdf1 results from its accelerated 5' to 3' degradation of the broken chromosome. Permanent arrest in hdf1 cells is suppressed by rad50(More)
Clinical pain syndromes, and experimental assays of nociception, are differentially affected by manipulations such as drug administration and exposure to environmental stress. This suggests that there are different 'types' of pain. We exploited genetic differences among inbred strains of mice in an attempt to define these primary 'types'; that is, to(More)
damage such as a double-strand break (DSB) of a chromosome causes eukaryotic cells to arrest cell cycle progression. Arrest provides a greater opportunity for cells to repair DNA damage prior to mitosis, which might cause cells to inherit chromosomes in which DNA repli-cation was not complete or in which broken chromosome segments, lacking a centromere,(More)
Leucine-rich glioma inactivated 3 (LGI3) is a member of LGI/epitempin (EPTP) family. The biological function of LGI3 and its association with disease are not known. We previously reported that mouse LGI3 was highly expressed in brain in a developmentally and transcriptionally regulated manner. In this study, we identified syntaxin 1, a SNARE component in(More)
DNA recombination pathways are regulated by the cell cycle to coordinate with replication. Cyclin-dependent kinase (Cdk1) promotes efficient 5' strand resection at DNA double-strand breaks (DSBs), the initial step of homologous recombination and damage checkpoint activation. The Mre11-Rad50-Xrs2 complex with Sae2 initiates resection, whereas two nucleases,(More)
Gross chromosomal rearrangement (GCR) is a type of genomic instability associated with many cancers. In yeast, multiple pathways cooperate to suppress GCR. In a screen for genes that promote GCR, we identified MPH1, which encodes a 3'-5' DNA helicase. Overexpression of Mph1p in yeast results in decreased efficiency of homologous recombination (HR) as well(More)
BACKGROUND Our hypothesis is that the location of the seminal vesicles near the base of the prostate, the more positive cores are detected in the base, the greater the risk of seminal vesicle invasion. Therefore we investigate the clinical outcomes of base dominant prostate cancer (BDPC) in transrectal ultrasound (TRUS) -guided biopsies compared with(More)
Eukaryotes have acquired many mechanisms to repair DNA double-strand breaks (DSBs) [1]. In the yeast Saccharomyces cerevisiae, this damage can be repaired either by homologous recombination, which depends on the Rad52 protein, or by non-homologous end-joining (NHEJ), which depends on the proteins yKu70 and yKu80 [2] [3]. How do cells choose which repair(More)
Nerve growth factor (NGF) is believed to play a critical role in altering the phenotypic and functional properties of dorsal root ganglion (DRG) cells after a pathological insult. The present study examined NGF protein levels and NGF immunoreactivity (NGF-IR) in the DRG at multiple time points following peripheral nerve injury. The NGF protein level in the(More)