Learn More
Autosomal recessive polycystic kidney disease (ARPKD) is characterized by dilation of collecting ducts and by biliary dysgenesis and is an important cause of renal- and liver-related morbidity and mortality. Genetic analysis of a rat with recessive polycystic kidney disease revealed an orthologous relationship between the rat locus and the ARPKD region in(More)
The autosomal recessive form of polycystic kidney disease (ARPKD) is generally considered an infantile disorder with the typical presentation of greatly enlarged echogenic kidneys detected in utero or within the neonatal period, often resulting in neonatal demise. However, there is an increasing realization that survivors often thrive into adulthood with(More)
A "two-hit" hypothesis predicts a second somatic hit, in addition to the germline mutation, as a prerequisite to cystogenesis and has been proposed to explain the focal nature for renal cyst formation in autosomal dominant polycystic kidney disease (ADPKD). It was reported previously that Pkd1(null/null) mouse kidney epithelial cells are unresponsive to(More)
Autosomal dominant polycystic kidney disease (ADPKD) gene products polycystin-1 (PC1) and polycystin-2 (PC2) colocalize in the apical monocilia of renal epithelial cells. Mouse and human renal cells without PC1 protein show impaired ciliary mechanosensation, and this impairment has been proposed to promote cystogenesis. However, most cyst epithelia of human(More)
Mutations in two large multi-exon genes, PKD1 and PKD2, cause autosomal dominant polycystic kidney disease (ADPKD). The duplication of PKD1 exons 1-32 as six pseudogenes on chromosome 16, the high level of allelic heterogeneity, and the cost of Sanger sequencing complicate mutation analysis, which can aid diagnostics of ADPKD. We developed and validated a(More)
Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent, potentially lethal monogenic disorder. Over the past two decades, its study has yielded remarkable progress. The mutated genes have been identified by positional cloning, the function of a novel class of conserved proteins encoded by these genes has been partially elucidated, and a(More)
Mutation-based molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) is complicated by genetic and allelic heterogeneity, large multi-exon genes, duplication of PKD1, and a high level of unclassified variants (UCV). Present mutation detection levels are 60 to 70%, and PKD1 and PKD2 UCV have not been systematically classified. This(More)
There are no proven, effective therapies for polycystic kidney disease (PKD) or polycystic liver disease (PLD). We enrolled 42 patients with severe PLD resulting from autosomal dominant PKD (ADPKD) or autosomal dominant PLD (ADPLD) in a randomized, double-blind, placebo-controlled trial of octreotide, a long-acting somatostatin analogue. We randomly(More)
BACKGROUND AND OBJECTIVES Primary hyperoxaluria types I and II (PHI and PHII) are rare monogenic causes of hyperoxaluria and calcium oxalate urolithiasis. Recently, we described type III, due to mutations in HOGA1 (formerly DHDPSL), hypothesized to cause a gain of mitochondrial 4-hydroxy-2-oxoglutarate aldolase activity, resulting in excess oxalate. (More)
The phenotypes that are associated with the common forms of polycystic kidney disease (PKD)--autosomal dominant (ADPKD) and autosomal recessive (ARPKD)--are highly variable in penetrance. This is in terms of severity of renal disease, which can range from neonatal death to adequate function into old age, characteristics of the liver disease, and other(More)