Sandro Romani

Learn More
Sensory cue inputs and memory-related internal brain activities govern the firing of hippocampal neurons, but which specific firing patterns are induced by either of the two processes remains unclear. We found that sensory cues guided the firing of neurons in rats on a timescale of seconds and supported the formation of spatial firing fields. Independently(More)
In serial recall experiments, human subjects are requested to retrieve a list of words in the same order as they were presented. In a classical study, participants were reported to recall more words from study lists composed of short words compared to lists of long words, the word length effect. The world length effect was also observed in free recall(More)
We have used simulations to study the learning dynamics of an autonomous, biologically realistic recurrent network of spiking neurons connected via plastic synapses, subjected to a stream of stimulus-delay trials, in which one of a set of stimuli is presented followed by a delay. Long-term plasticity, produced by the neural activity experienced during(More)
Most people have great difficulty in recalling unrelated items. For example, in free recall experiments, lists of more than a few randomly selected words cannot be accurately repeated. Here we introduce a phenomenological model of memory retrieval inspired by theories of neuronal population coding of information. The model predicts nontrivial scaling(More)
Macaque monkeys were tested on a delayed-match-to-multiple-sample task, with either a limited set of well trained images (in randomized sequence) or with never-before-seen images. They performed much better with novel images. False positives were mostly limited to catch-trial image repetitions from the preceding trial. This result implies extremely(More)
Hippocampal place cells encode the animal's spatial position. However, it is unknown how different long-range sensory systems affect spatial representations. Here we alternated usage of vision and echolocation in Egyptian fruit bats while recording from single neurons in hippocampal areas CA1 and subiculum. Bats flew back and forth along a linear flight(More)
Rodent hippocampus exhibits strikingly different regimes of population activity in different behavioral states. During locomotion, hippocampal activity oscillates at theta frequency (5-12 Hz) and cells fire at specific locations in the environment, the place fields. As the animal runs through a place field, spikes are emitted at progressively earlier phases(More)
Continuous attractor networks are used to model the storage and representation of analog quantities, such as position of a visual stimulus. The storage of multiple continuous attractors in the same network has previously been studied in the context of self-position coding. Several uncorrelated maps of environments are stored in the synaptic connections, and(More)
Mean-Field theory is extended to recurrent networks of spiking neurons endowed with short-term depression (STD) of synaptic transmission. The extension involves the use of the distribution of interspike intervals of an integrate-and-fire neuron receiving a Gaussian current, with a given mean and variance, in input. This, in turn, is used to obtain an(More)
A network of excitatory synapses trained with a conservative version of Hebbian learning is used as a model for recognizing the familiarity of thousands of once-seen stimuli from those never seen before. Such networks were initially proposed for modeling memory retrieval (selective delay activity). We show that the same framework allows the incorporation of(More)