Learn More
We have used simulations to study the learning dynamics of an autonomous, biologically realistic recurrent network of spiking neurons connected via plastic synapses, subjected to a stream of stimulus-delay trials, in which one of a set of stimuli is presented followed by a delay. Long-term plasticity, produced by the neural activity experienced during(More)
Sensory cue inputs and memory-related internal brain activities govern the firing of hippocampal neurons, but which specific firing patterns are induced by either of the two processes remains unclear. We found that sensory cues guided the firing of neurons in rats on a timescale of seconds and supported the formation of spatial firing fields. Independently(More)
In serial recall experiments, human subjects are requested to retrieve a list of words in the same order as they were presented. In a classical study, participants were reported to recall more words from study lists composed of short words compared to lists of long words, the word length effect. The world length effect was also observed in free recall(More)
Continuous attractor networks are used to model the storage and representation of analog quantities, such as position of a visual stimulus. The storage of multiple continuous attractors in the same network has previously been studied in the context of self-position coding. Several uncorrelated maps of environments are stored in the synaptic connections, and(More)
Mean-Field theory is extended to recurrent networks of spiking neurons endowed with short-term depression (STD) of synaptic transmission. The extension involves the use of the distribution of interspike intervals of an integrate-and-fire neuron receiving a Gaussian current, with a given mean and variance, in input. This, in turn, is used to obtain an(More)
Macaque monkeys were tested on a delayed-match-to-multiple-sample task, with either a limited set of well trained images (in randomized sequence) or with never-before-seen images. They performed much better with novel images. False positives were mostly limited to catch-trial image repetitions from the preceding trial. This result implies extremely(More)
A network of excitatory synapses trained with a conservative version of Hebbian learning is used as a model for recognizing the familiarity of thousands of once-seen stimuli from those never seen before. Such networks were initially proposed for modeling memory retrieval (selective delay activity). We show that the same framework allows the incorporation of(More)
Most people have great difficulty in recalling unrelated items. For example, in free recall experiments, lists of more than a few randomly selected words cannot be accurately repeated. Here we introduce a phenomenological model of memory retrieval inspired by theories of neuronal population coding of information. The model predicts nontrivial scaling(More)
Human memory stores vast amounts of information. Yet recalling this information is often challenging when specific cues are lacking. Here we consider an associative model of retrieval where each recalled item triggers the recall of the next item based on the similarity between their long-term neuronal representations. The model predicts that different items(More)
Rodent hippocampus exhibits strikingly different regimes of population activity in different behavioral states. During locomotion, hippocampal activity oscillates at theta frequency (5-12 Hz) and cells fire at specific locations in the environment, the place fields. As the animal runs through a place field, spikes are emitted at progressively earlier phases(More)