Sandro Carrara

Learn More
This paper presents a fully electronic label-free DNA chip in 0.5-mum CMOS technology, with 5-V supply voltage, suitable for low-cost highly integrated applications. The chip features an array of 128 sensor sites with gold electrodes and integrated measurement, conditioning, multiplexing and analog-to-digital conversion circuitry. The circuits measure(More)
This paper reviews some popular techniques to harvest energy for implantable biosensors. For each technique, the advantages and drawbacks are discussed. Emphasis is placed on the inductive links that are able to deliver power wirelessly through the biological tissues and enable bidirectional data communication with the implanted sensors. Finally,(More)
A wearable device to power implanted sensors by means of an inductive link is presented. The system, having size 69 &#x00D7; 40 mm<sup>2</sup>, is designed to be embedded into a skin patch and located over the implantation area. The system can transfer up to 15 mW within 6 mm in air. Tested with a 17 mm thick beef sirloin placed between the inductors, the(More)
This paper presents a lightweight cryptographic system integrated onto a multi-function implantable biosensor prototype. The resulting heterogeneous system provides a unique and fundamental capability by immediately encrypting and signing the sensor data upon its creation within the body. By providing these security services directly on the implantable(More)
This focus article introduces the concept of NutriChip, an integrated microfluidic platform for investigating the potential of the immuno-modulatory function of dairy food. The core component of the NutriChip is a miniaturized artificial human gastrointestinal tract (GIT), which consists of a confluent layer of epithelial cells separated from a co-culture(More)
The paper aims at exploring advantages and drawbacks of using high-frequency inductive links to transmit power wirelessly to implanted biosensors. A system with an external transmitting coil located into a skin patch and a receiving coil embedded into a fully implanted biosensor is simulated. The effects of the geometry of the coils on the optimal working(More)
Biosensing for chronic pathologies requires the simultaneous monitoring of different parameters such as drug concentrations, inflammation status, temperature and pH. In this paper we discuss the design, fabrication and test of a sensor array hosting five biosensor platforms, a pH electrode and a temperature sensor. Different and reproducible(More)
We report on the electrochemical detection of anti-cancer drugs in human serum with sensitivity values in the range of 8-925 nA/μM. Multi-walled carbon nanotubes were functionalized with three different cytochrome P450 isoforms (CYP1A2, CYP2B6, and CYP3A4). A model used to effectively describe the cytochrome P450 deposition onto carbon nanotubes was(More)
This paper presents a microfabricated DNA chip for fully electronic, label-free DNA recognition based on capacitance measurements. The chip has been fabricated in 0.5-mum CMOS technology and it features an array of individually addressable sensing sites consisting of pairs of gold electrodes and addressing logic. Read-out circuitry is built externally using(More)
An approach based on multi-layer spiral inductors to remotely power implantable sensors is investigated. As compared to single-layer inductors having the same area, multi-layer printed inductors enable a higher efficiency (up to 35% higher) and voltage gain (almost one order of magnitude higher). A system conceived to be embedded into a skin patch is(More)