Sandrine Morin-Grognet

  • Citations Per Year
Learn More
Carboxylated, sulfated and/or phosphorylated surfaces are admitted as potential optimal templates for biomimetic deposition of calcium phosphate (CaP) coatings in view of improving implants' osseointegration. Layer-by-layer films were built up consisting of anionic chondroitin sulfate (ChS), a biological carboxylated and sulfated polysaccharide and cationic(More)
The design of biomimetic coatings capable of improving the osseointegration of bone biomaterials is a current challenge in the field of bone repair. Toward this end, layer-by-layer (LbL) films composed of natural components are suitable candidates. Chondroitin sulfate A (CSA), a natural glycosaminoglycan (GAG), was used as the polyanionic component because(More)
A cyclic olefin copolymer (COC) was grafted with aryl layers from aryldiazonium salts, and then we combined infrared spectrometry, atomic force microscopy (AFM), and ion mobility mass spectrometry with atmospheric solid analysis probe ionization (ASAP-IM-MS) to characterize the aryl layers. ASAP is a recent atmospheric ionization method dedicated to the(More)
Layer-by-Layer (LbL) coatings are promising tools for the biofunctionalization of biomaterials, as they allow stress-free immobilization of proteins. Here, we explore the possibility to immobilize phosvitin, a highly phosphorylated protein viewed as a model of bone phosphoproteins and, as such, a potential promotive agent of surface-directed(More)
We combined topographical and chemical surface modifications of Ti-6Al-4V (TA6V) to improve its osteogenic potential. By acid-etching, we first generated topomimetic surface features resembling, in size and roughness, bone cavities left by osteoclasts. Next, we coated these surfaces with biomimetic Layer-by-Layer films (LbL), composed of chondroitin sulfate(More)
This article reports the synthesis and functionalization of a novel CuO@SiO2-APTES@Ag0 core-shell-shell material using a simple and low-cost process. The growth, design strategies and synthesis approach are the key factors for the development of CuO@SiO2-APTES@Ag0 as efficient material with enhanced antibacterial activity. We investigated the morphology,(More)
  • 1