Learn More
The Bacillus cereus group represents sporulating soil bacteria containing pathogenic strains which may cause diarrheic or emetic food poisoning outbreaks. Multiple locus sequence typing revealed a presence in natural samples of these bacteria of about 30 clonal complexes. Application of genomic methods to this group was however biased due to the major(More)
DNA arrays were used to investigate the global transcriptional profile of Bacillus subtilis grown in the presence of sulfate or methionine as the sole sulfur source. The expression of at least 56 genes differed significantly under the two growth conditions. The expression of several genes belonging to the S-box regulon was repressed in the presence of(More)
An aerobic endospore-forming bacillus (NVH 391-98(T)) was isolated during a severe food poisoning outbreak in France in 1998, and four other similar strains have since been isolated, also mostly from food poisoning cases. Based on 16S rRNA gene sequence similarity, these strains were shown to belong to the Bacillus cereus Group (over 97% similarity with the(More)
Cell-free supernatants from growing Bacillus cereus strain ATCC 10987 induced luminescence in a Photorhabdus luminescens DeltaluxS mutant, indicating the production of functional autoinducer 2 (AI-2). The exogenous addition of in vitro synthesized AI-2 had an inhibitory effect on biofilm formation by B. cereus and promoted release of the cells from a(More)
The symporter YhcL and two ATP binding cassette transporters, YtmJKLMN and YckKJI, were shown to mediate L-cystine uptake in Bacillus subtilis. A triple DeltayhcL DeltaytmJKLMN DeltayckK mutant was unable to grow in the presence of L-cystine and to take up L-cystine. We propose that yhcL, ytmJKLMN, and yckKJI should be renamed tcyP, tcyJKLMN, and tcyABC,(More)
The way in which the genes involved in cysteine biosynthesis are regulated is poorly characterized in Bacillus subtilis. We showed that CysL (formerly YwfK), a LysR-type transcriptional regulator, activates the transcription of the cysJI operon, which encodes sulfite reductase. We demonstrated that a cysL mutant and a cysJI mutant have similar phenotypes.(More)
There are two major pathways for methionine biosynthesis in micro-organisms. Little is known about these pathways in Bacillus subtilis. The authors assigned a function to the metI (formerly yjcI) and metC (formerly yjcJ) genes of B. subtilis by complementing Escherichia coli metB and metC mutants, analysing the phenotype of B. subtilis metI and metC(More)
Biofilm formation by 102 Bacillus cereus and B. thuringiensis strains was determined. Strains isolated from soil or involved in digestive tract infections were efficient biofilm formers, whereas strains isolated from other diseases were poor biofilm formers. Cell surface hydrophobicity, the presence of an S layer, and adhesion to epithelial cells were also(More)
Little is known about the genes and enzymes involved in sulfur assimilation in Bacillus subtilis, or about the regulation of their expression or activity. To identify genes regulated by sulfur limitation, the authors used two- dimensional (2D) gel electrophoresis to compare the proteome of a wild-type strain grown with either sulfate or glutathione as sole(More)
Bacillus subtilis can use methionine as the sole sulfur source, indicating an efficient conversion of methionine to cysteine. To characterize this pathway, the enzymatic activities of CysK, YrhA and YrhB purified in Escherichia coli were tested. Both CysK and YrhA have an O-acetylserine-thiol-lyase activity, but YrhA was 75-fold less active than CysK. An(More)