Sandra Wohlgemuth

Learn More
Desert ants (Cataglyphis) are renowned for their ability to perform large-scale foraging excursions and then return to the nest by path integration. They do so by integrating courses steered and the distances travelled into a continually updated home vector. Whereas the angular orientation is based on skylight cues, how the ants gauge the distances(More)
Sound envelope cues play a crucial role for the recognition and discrimination of communication signals in diverse taxa, such as vertebrates and arthropods. Using a classification based on metric similarities of spike trains we investigate how well amplitude modulations (AMs) of sound signals can be distinguished at three levels of the locust's auditory(More)
The present account answers the question of whether desert ants (Cataglyphis fortis) gauge the distance they have travelled by using self-induced lateral optic-flow parameters, as has been described for bees. The ants were trained to run to a distant food source within a channel whose walls were covered with black-and-white gratings. From the food source,(More)
Desert ants of the genus Cataglyphis perform large-scale foraging excursions from which they return to their nest by path integration. They do so by integrating courses steered and the distances travelled into a continually updated home vector. While it is known that the angular orientation is based on skylight cues, it still is largely enigmatic how the(More)
Optimal coding principles are implemented in many large sensory systems. They include the systematic transformation of external stimuli into a sparse and decorrelated neuronal representation, enabling a flexible readout of stimulus properties. Are these principles also applicable to size-constrained systems, which have to rely on a limited number of neurons(More)
We investigated encoding properties of identified auditory interneurons in two not closely related grasshopper species (Acrididae). The neurons can be homologized on the basis of their similar morphologies and physiologies. As test stimuli, we used the species-specific stridulation signals of Chorthippus biguttulus, which evidently are not relevant for the(More)
Object recognition and classification by sensory pathways is rooted in spike trains provided by sensory neurons. Nervous systems had to evolve mechanisms to extract information about relevant object properties, and to separate these from spurious features. In this review, problems caused by spike train variability and counterstrategies are exemplified for(More)
A characteristic feature of hearing systems is their ability to resolve both fast and subtle amplitude modulations of acoustic signals. This applies also to grasshoppers, which for mate identification rely mainly on the characteristic temporal patterns of their communication signals. Usually the signals arriving at a receiver are contaminated by various(More)
Acoustic communication often involves complex sound motifs in which the relative durations of individual elements, but not their absolute durations, convey meaning. Decoding such signals requires an explicit or implicit calculation of the ratios between time intervals. Using grasshopper communication as a model, we demonstrate how this seemingly difficult(More)
The timescale-invariant recognition of temporal stimulus sequences is vital for many species and poses a challenge for their sensory systems. Here we present a simple mechanistic model to address this computational task, based on recent observations in insects that use rhythmic acoustic communication signals for mate finding. In the model framework,(More)