Sandra Villanueva

Learn More
The neural crest is a unique cell population induced at the lateral border of the neural plate. Neural crest is not produced at the anterior border of the neural plate, which is fated to become forebrain. Here, the roles of BMPs, FGFs, Wnts, and retinoic acid signaling in neural crest induction were analyzed by using an assay developed for investigating the(More)
The chemical nature of the central transmitter responsible for fast excitatory events and other related phenomena is analysed against the historical background that has progressively clarified the structure and function of central synapses. One of the problems posed by research in this field has been whether one or more of the numerous excitatory substances(More)
We have isolated highly purified rat brain postsynaptic densities (PSDs), that are known to contain glutamate receptors of the AMPA and NMDA types. These PSDs were incorporated into liposomes, and grown, by a cycle of partial de- and rehydration in 5% ethylene glycol, into giant (5-100 microns in diameter) liposomes. These giant liposomes were then made to(More)
The presence of endogenous ligands for the N-methyl-D-aspartate receptor was looked for in highly purified rat brain cortex synaptic vesicles, the contents of which were extracted and fractionated by gel filtration on Sephadex G-10, or by three different high-voltage electrophoresis procedures. The presence of endogenous ligands was detected by their(More)
Postsynaptic densities (PSDs) were isolated from rat brain cortex and hippocampus, purified and incorporated into giant (5-80 microns in diameter) liposomes. Gigaohm seals were obtained with a patch-clamp pipette, and a giant liposome PSD-containing membrane patch, was excised and recorded. The PSD was always oriented in an inside-out configuration. This(More)
Acute renal failure (ARF) is a clinical syndrome characterized by deterioration of renal function over a period of hours or days. The principal causes of ARF are ischemic and toxic insults that can induce tissue hypoxia. Transcriptional responses to hypoxia can be inflammatory or adaptive with the participation of the hypoxia-inducible factor 1alpha and the(More)
The presence in highly purified rat brain cortex synaptic vesicles of endogenous ligands for rat brain quisqualate receptors was investigated. The vesicles were extracted, and their contents fractionated by high voltage electrophoresis. Endogenous ligands were detected by a radioreceptor assay in which such ligands competed with 50 nM L-[3H]glutamate for(More)
It has been proposed that nitric oxide (NO) is an inhibitory modulator of carotid body (CB) chemoreception to hypoxia. However, the effects of NO gas on carotid chemoreception have not been tested yet. The role played by NO has been revealed by the use of pharmacological tools (i.e., NO donors and NO synthase inhibitors). Here, we studied the effects of NO(More)
The current hypothesis postulates that NFAT5 activation in the kidney's inner medulla is due to hypertonicity, resulting in cell protection. Additionally, the renal medulla is hypoxic (10-18 mmHg); however there is no information about the effect of hypoxia on NFAT5. Using in vivo and in vitro models, we evaluated the effect of reducing the partial pressure(More)
Kir7.1 is an inwardly rectifying K+ channel of the Kir superfamily encoded by the kcnj13 gene. Kir7.1 is present in epithelial tissues where it colocalizes with the Na+/K+-pump probably serving to recycle K+ taken up by the pump. Human mutations affecting Kir7.1 are associated with retinal degeneration diseases. We generated a mouse lacking Kir7.1 by(More)