Learn More
Corticotropin-releasing factor (CRF) administered intracerebroventricularly (i.c.v.) activates noradrenergic locus coeruleus (LC) neurons of halothane-anesthetized and unanesthetized rats. This study used a technique for microinfusing CRF into the LC from calibrated micropipettes to characterize and quantify the effects of locally administered CRF on LC(More)
Voltage-gated calcium channels (VGCCs) play an essential role in controlling neurotransmitter release, neuronal excitability, and gene expression in the nervous system. The distribution of cells that contain mRNAs encoding the auxiliary alpha2delta-1, alpha2delta-2, and alpha2delta-3 subunits of the VGCCs in the central nervous system (CNS) and the dorsal(More)
High-affinity glycine transport in neurons and glial cells is a primary means of inactivating synaptic glycine. We have synthesized a potent selective inhibitor of glycine transporter 1 (GlyT1), and characterized its activity using a quail fibroblast cell line (QT6). The glycine transporters GlyT1A, GlyT1B, GlyT1C, and GlyT2 were stably expressed in QT6(More)
The receptor localization of metabotropic glutamate receptors (mGlu) 2 and 3 was examined by using in situ hybridization and a well-characterized mGlu2-selective antibody in the rat forebrain. mGlu2 was highly and discretely expressed in cell bodies in almost all of the key regions of the limbic system in the forebrain, including the midline and(More)
Transcriptional profiling was performed to survey the global expression patterns of 20 anatomically distinct sites of the human central nervous system (CNS). Forty-five non-CNS tissues were also profiled to allow for comparative analyses. Using principal component analysis and hierarchical clustering, we were able to show that the expression patterns of the(More)
A growing body of evidence suggests that activation of the glutamatergic system, particularly N-methyl-D-aspartate (NMDA) receptor function, may be a viable approach to the treatment of schizophrenia, and potentially other cognitive disorders. The excitotoxicity associated with direct NMDA receptor agonists limits their therapeutic potential, and the(More)
The present study was designed to elucidate the neurotransmitters involved in activation of the noradrenergic nucleus, locus coeruleus, by distention of the distal colon. Locus coeruleus spontaneous discharge rate was recorded from halothane-anesthetized rats before, during and after distention of the colon produced by inflation of a balloon catheter with(More)
The stress-related neurohormone, corticotropin-releasing factor (CRF), also acts as a neurotransmitter to activate the brain noradrenergic nucleus, locus coeruleus (LC). Previous electrophysiological findings demonstrating that tonic CRF secretion in the LC is increased in adrenalectomized rats suggest that activity of certain CRF afferents to the LC is(More)
Using cAMP accumulation as a functional readout, we pharmacologically characterized the response of native melanocortin receptors in cultured rat astrocytes, and found this response to be mediated by the melanocortin 4 receptor (MC4R). Melancortin agonists stimulate cAMP in a concentration-dependent manner in both astrocytes and human embryonic kidney cells(More)