Learn More
The prevalence of obesity in children and adults in the United States has increased dramatically over the past decade. Genomic copy number variations (CNVs) have been strongly implicated in subjects with extreme obesity and coexisting developmental delay. To complement these previous studies, we addressed CNVs in common childhood obesity by examining(More)
Obesity is a serious health concern for children and adolescents, particularly in Western societies, where its incidence is now considered to have reached epidemic proportions. A number of genetic determinants of adult BMI have already been established through genome wide association studies (GWAS), most recently from the GIANT meta-analysis of such(More)
OBJECTIVE Common variation at the loci harboring fat mass and obesity (FTO), melanocortin receptor 4 (MC4R), and transmembrane protein 18 (TMEM18) is consistently reported as being statistically most strongly associated with obesity. Investigations if these loci also harbor rarer missense variants that confer substantially higher risk of common childhood(More)
ChIP-sequencing (ChIP-seq) methods directly offer whole-genome coverage, where combining chromatin immunoprecipitation (ChIP) and massively parallel sequencing can be utilized to identify the repertoire of mammalian DNA sequences bound by transcription factors in vivo. "Next-generation" genome sequencing technologies provide 1-2 orders of magnitude increase(More)
BACKGROUND Human height is considered highly heritable and correlated with certain disorders, such as type 2 diabetes and cancer. Despite environmental influences, genetic factors are known to play an important role in stature determination. A number of genetic determinants of adult height have already been established through genome wide association(More)
Genome-wide association studies (GWAS) have demonstrated that genetic variation at the MADS box transcription enhancer factor 2, polypeptide C (MEF2C) locus is robustly associated with bone mineral density, primarily at the femoral neck. MEF2C is a transcription factor known to operate via the Wnt signaling pathway. Our hypothesis was that MEF2C regulates(More)
Resolving the underlying functional mechanism to a given genetic association has proven extremely challenging. However, the strongest associated type 2 diabetes (T2D) locus reported to date, TCF7L2, presents an opportunity for translational analyses, as many studies in multiple ethnicities strongly point to SNP rs7903146 in intron 3 as being the causal(More)
BACKGROUND The transcription factor 7-like 2 (TCF7L2) locus is strongly implicated in the pathogenesis of type 2 diabetes (T2D). We previously mapped the genomic regions bound by TCF7L2 using ChIP (chromatin immunoprecipitation)-seq in the colorectal carcinoma cell line, HCT116, revealing an unexpected highly significant over-representation of genome-wide(More)
There is evidence that one of the key type 2 diabetes (T2D) loci identified by GWAS exerts its influence early on in life through its impact on pediatric BMI. This locus on 10q23 harbors three genes, encoding hematopoietically expressed homeobox (HHEX), insulin-degrading enzyme (IDE) and kinesin family member 11 (KIF11), respectively. We analyzed the impact(More)
  • 1