Sandra Costa Dos Santos

Learn More
The emergence of widespread multidrug resistance (MDR) is a serious challenge for therapeutics, food-preservation and crop protection. Frequently, MDR is a result of the action of drug-efflux pumps, which are able to catalyze the extrusion of unrelated chemical compounds. This review summarizes the current knowledge on the Saccharomyces cerevisiae drug:H+(More)
Long-term respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) patients generally lead to a more rapid decline in lung function and, in some cases, to a fatal necrotizing pneumonia known as the "cepacia syndrome." Bcc bacteria are ubiquitous in the environment and are recognized as serious opportunistic pathogens(More)
During long-term lung infection in cystic fibrosis (CF) patients, Burkholderia cenocepacia faces multiple selective pressures in this highly stressful and fluctuating environment. As a consequence, the initial infecting strain undergoes genetic changes that result in the diversification of genotypes and phenotypes. Whether this clonal expansion influences(More)
The yeast Saccharomyces cerevisiae remains a highly relevant experimental model in the field of toxicogenomics and is an important microbial cell factory for the production of added-value chemicals and biofuels. Its deep functional characterization coupled with the straightforward exploitation of Omic approaches and metabolic engineering, at the frontline(More)
The dermaseptins are a family of antimicrobial peptides from the tree-frog Phyllomedusa sauvagii. Yeast exposed to dermaseptin S3(1-16), a truncated derivative of dermaseptin S3 with full activity, showed diagnostic markers of yeast apoptosis: the appearance of reactive oxygen species and fragmentation of nuclear DNA. This process was independent of the(More)
The emerging transdisciplinary field of Toxicogenomics aims to study the cell response to a given toxicant at the genome, transcriptome, proteome, and metabolome levels. This approach is expected to provide earlier and more sensitive biomarkers of toxicological responses and help in the delineation of regulatory risk assessment. The use of model organisms(More)
Quinine is used in the treatment of Plasmodium falciparum severe malaria. However, both the drug's mode of action and mechanisms of resistance are still poorly understood and subject to debate. In an effort to clarify these questions, we used the yeast Saccharomyces cerevisiae as a model for pharmacological studies with quinine. Following on a previous work(More)
Imatinib is a highly selective tyrosine kinase inhibitor of the oncogenic kinase Bcr-Abl, the result of a chromosomal abnormality that is associated with chronic myeloid leukaemia (CML). Despite the success of this target-directed therapy, imatinib resistance is an emerging problem, especially in advanced stages of CML. In this study, we explored the yeast(More)
Imatinib mesylate (IM) is a potent tyrosine kinase inhibitor used as front-line therapy in chronic myeloid leukemia, a disease caused by the oncogenic kinase Bcr-Abl. Although the clinical success of IM set a new paradigm in molecular-targeted therapy, the emergence of IM resistance is a clinically significant problem. In an effort to obtain new insights(More)
Quinine has been employed in the treatment of malaria for centuries and is still used against severe Plasmodium falciparum malaria. However, its interactions with the parasite remain poorly understood and subject to debate. In this study, we used the Saccharomyces cerevisiae eukaryotic model to better understand quinine's mode of action and the mechanisms(More)