Sandra A. Rempel

Learn More
Our recent studies have focused on identifying invasion-promoting genes that are expressed early in brain tumor progression. We identified and characterized SPARC (secreted protein acidic and rich in cysteine) as a potential candidate. To determine whether increased SPARC expression functionally promotes brain tumor invasion, SPARC was transfected into(More)
SPARC, a 32-kDa matricellular glycoprotein, mediates interactions between cells and their extracellular matrix, and targeted deletion of Sparc results in compromised extracellular matrix in mice. Fibronectin matrix provides provisional tissue scaffolding during development and wound healing and is essential for the stabilization of mature extracellular(More)
MicroRNAs (miRNAs) have emerged as potential cancer therapeutics; however, their clinical use is hindered by lack of effective delivery mechanisms to tumor sites. Mesenchymal stem cells (MSCs) have been shown to migrate to experimental glioma and to exert anti-tumor effects by delivering cytotoxic compounds. Here, we examined the ability of MSCs derived(More)
Meningiomas are common nervous system tumors, whose molecular pathogenesis is poorly understood. To date, the most frequent genetic alteration detected in these tumors is loss of heterozygosity (LOH) on chromosome 22q. This finding led to the identification of the neurofibromatosis 2 (NF2) tumor suppressor gene on 22q12, which is inactivated in 40% of(More)
Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function(More)
We have demonstrated that secreted protein acidic and rich in cysteine (SPARC) is highly expressed in human gliomas and it promotes glioma invasion and delays tumor growth in vitro and in vivo. cDNA array analyses were performed to determine whether SPARC, which interacts at the cell surface, has an impact on intracellular signaling and downstream gene(More)
The poor prognosis of human malignant gliomas is due to their invasion and recurrence, the molecular mechanisms of which remain poorly characterized. We have accumulated substantial evidence implicating the cysteine protease cathepsin B in human glioma malignancy. Increases in cathepsin B expression were observed throughout progression. In primary brain(More)
Glioblastoma multiforme (GBM) tumors display extensive histomorphological heterogeneity, with great variability in the extent of invasiveness, angiogenesis, and necrosis. The identification of genes associated with these phenotypes should further the molecular characterization, permitting better definition of glioma subsets that may ultimately lead to(More)
In an attempt to identify genetic alterations occurring early in astrocytoma progression, we performed subtractive hybridization between astrocytoma and glioblastoma cDNA libraries. We identified secreted protein acidic and rich in cysteine (SPARC), a protein implicated in cell-matrix interactions, as a gene overexpressed early in progression. Northern blot(More)
Secreted protein acidic and rich in cysteine (SPARC) is highly expressed in human astrocytomas, grades II-IV. We demonstrated previously that SPARC promotes invasion in vitro using the U87MG-derived clone U87T2 and U87T2-derived SPARC-transfected clones, A2b2, A2bi, and C2a4, in the spheroid confrontation assay. Additional in vitro studies demonstrated that(More)