Sandor Laky

Learn More
Most commercial LIDAR systems temporarily record the entire laser pulse echo signal, called full-waveform, as a function of time to extract the return pulses at data acquisition level in real-time; typically up to 4-5 returns. The new generation of airborne laser scanners, the full-waveform LiDAR systems, are not only able to digitize but can record the(More)
Today’s advanced LiDAR systems are able to record the entire laser echo pulse, provided that sufficient data storage is available on the airborne platform. The recorded echo pulses, frequently called waveform data or full-waveform, can then be used to analyze the properties of the reflecting surface, such as classifying objects based on their material(More)
Given sufficient data storage capacity, today’s full-waveform LiDAR systems are able to record and store the entire laser pulse echo signal. This provides the possibility of further analyzing the physical characteristics of the reflecting objects. However the size of the captured data is enormous and currently not practical. Thus arises the need for(More)
Full waveform recording is becoming increasingly affordable and, consequently, available in today's state-of-the-art LiDAR systems. Therefore, there is no practical limitation to the complexity of pulse detection and other methods that can be applied in post-processing mode. Analyzing the entire return signal, the full waveform can provide additional(More)
  • 1