Learn More
Nicotinic acid adenine dinucleotide phosphate (NAADP) mobilizes Ca(2+) in many cells and species. Unlike other Ca(2+)-mobilizing messengers, NAADP mobilizes Ca(2+) from an unknown store that is not the endoplasmic reticulum, the store traditionally associated with messenger-mediated Ca(2+) signaling. Here, we demonstrate the presence of a Ca(2+) store in(More)
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a widespread and potent calcium-mobilizing messenger that is highly unusual in activating calcium channels located on acidic stores. However, the molecular identity of the target protein is unclear. In this study, we show that the previously uncharacterized human two-pore channels (TPC1 and TPC2) are(More)
The immunogenicities of candidate DNA- and modified vaccinia virus Ankara (MVA)-vectored human immunodeficiency virus (HIV) vaccines were evaluated on their own and in a prime-boost regimen in phase I clinical trials in healthy uninfected individuals in the United Kingdom. Given the current lack of approaches capable of inducing broad HIV-neutralizing(More)
Nicotinic acid adenine dinucleotide phosphate (NAADP) is an agonist-generated second messenger that releases Ca(2+) from intracellular acidic Ca(2+) stores. Recent evidence has identified the two-pore channels (TPCs) within the endolysosomal system as NAADP-regulated Ca(2+) channels that release organellar Ca(2+) in response to NAADP. However, little is(More)
NAADP is a highly potent mobilizer of Ca(2+), which in turn triggers Ca(2+)-induced Ca(2+) release pathways in a wide range of species. Nevertheless, NAADP is not presently classified as a second messenger because it has not been shown to increase in response to a physiological stimulus. We now report a dramatic increase in NAADP during sea urchin egg(More)
Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause late-onset Parkinson's disease, but its physiological function has remained largely unknown. Here we report that LRRK2 activates a calcium-dependent protein kinase kinase-β (CaMKK-β)/adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway which is followed by a persistent(More)
How different extracellular stimuli can evoke different spatiotemporal Ca2+ signals is uncertain. We have elucidated a novel paradigm whereby different agonists use different Ca2+-storing organelles ("organelle selection") to evoke unique responses. Some agonists select the endoplasmic reticulum (ER), and others select lysosome-related (acidic) organelles,(More)
Accumulating evidence implicates acidic organelles of the endolysosomal system as mobilisable stores of Ca(2+) but their relationship to the better-characterised endoplasmic reticulum (ER) Ca(2+) store remains unclear. Here we show that rapid osmotic permeabilisation of lysosomes evokes prolonged, spatiotemporally complex Ca(2+) signals in primary cultured(More)
Lysosomal Ca(2+) homeostasis is implicated in disease and controls many lysosomal functions. A key in understanding lysosomal Ca(2+) signaling was the discovery of the two-pore channels (TPCs) and their potential activation by NAADP. Recent work concluded that the TPCs function as a PI(3,5)P2 activated channels regulated by mTORC1, but not by NAADP. Here,(More)