Sander H. J. Smits

Learn More
The adaptive immunity of bacteria against foreign nucleic acids, mediated by CRISPR (clustered regularly interspaced short palindromic repeats), relies on the specific incorporation of short pieces of the invading foreign DNA into a special genomic locus, termed CRISPR array. The stored sequences (spacers) are subsequently used in the form of small RNAs(More)
Ectoine and hydroxyectoine are well-recognized members of the compatible solutes and are widely employed by microorganisms as osmostress protectants. The EctABC enzymes catalyze the synthesis of ectoine from the precursor L-aspartate-β-semialdehyde. A subgroup of the ectoine producers can convert ectoine into 5-hydroxyectoine through a region-selective and(More)
The human liver ATP-binding cassette (ABC) transporters bile salt export pump (BSEP/ABCB11) and the multidrug resistance protein 3 (MDR3/ABCB4) fulfill the translocation of bile salts and phosphatidylcholine across the apical membrane of hepatocytes. In concert with ABCG5/G8, these two transporters are responsible for the formation of bile and mutations(More)
Octopine dehydrogenase (OcDH) from the adductor muscle of the great scallop, Pecten maximus, catalyzes the NADH dependent, reductive condensation of L-arginine and pyruvate to octopine, NAD(+), and water during escape swimming and/or subsequent recovery. The structure of OcDH was recently solved and a reaction mechanism was proposed which implied an ordered(More)
Opine dehydrogenases catalyze the reductive condensation of pyruvate with L-amino acids. Biochemical characterization of alanopine dehydrogenase from Arenicola marina revealed that this enzyme is highly specific for L-alanine. Unbiased molecular dynamics simulations with a homology model of alanopine dehydrogenase captured the binding of L-alanine diffusing(More)
Homologous recombination in Saccharomyces cerevisiae is a well-studied process. Here, we describe a yeast-recombination-based approach to construct and mutate plasmids containing the cDNA of the human bile salt export pump (BSEP) that has been shown to be unstable in E. coli. Using this approach, we constructed the necessary plasmids for a heterologous(More)
Nisin is an antimicrobial peptide produced and secreted by several L. lactis strains and is specifically active against Gram-positive bacteria. In previous studies, nisin was purified via cation exchange chromatography at low pH employing a single-step elution using 1 M NaCl. Here, we describe an optimized purification protocol using a five-step NaCl(More)
Nisin, a 3.4 kDa antimicrobial peptide produced by some Lactococcus lactis strains is the most prominent member of the lantibiotic family. Nisin can inhibit cell growth and penetrates the target Gram-positive bacterial membrane by binding to Lipid II, an essential cell wall synthesis precursor. The assembled nisin-Lipid II complex forms pores in the target(More)
Lantibiotics are potent antimicrobial peptides. Nisin is the most prominent member and contains five crucial lanthionine rings. Some clinically relevant bacteria express membrane-associated resistance proteins that proteolytically inactivate nisin. However, substrate recognition and specificity of these proteins is unknown. Here, we report the first(More)
The lantibiotic nisin is a small 3.4 kDa antimicrobial peptide, which acts against Gram-positive bacteria in the nmol/L range. Nisin is produced and secreted by several Lactococcus lactis strains to ensure advantages against other bacteria in their habitat. Nisin contains five specific lanthionine rings of which the first two are important for Lipid II(More)