Learn More
Much controversy exists regarding proper methods for the selection of variables in confounder control. Many authors condemn any use of significance testing, some encourage such testing, and other propose a mixed approach. This paper presents the results of a Monte Carlo simulation of several confounder selection criteria, including change-in-estimate and(More)
In the absence of prior knowledge about population relations, investigators frequently employ a strategy that uses the data to help them decide whether to adjust for a variable. The authors compared the performance of several such strategies for fitting multiplicative Poisson regression models to cohort data: 1) the "change-in-estimate" strategy, in which a(More)
We consider the problem of separating the direct effects of an exposure from effects relayed through an intermediate variable (indirect effects). We show that adjustment for the intermediate variable, which is the most common method of estimating direct effects, can be biased. We also show that even in a randomized crossover trial of exposure, direct and(More)
Causal diagrams have a long history of informal use and, more recently, have undergone formal development for applications in expert systems and robotics. We provide an introduction to these developments and their use in epidemiologic research. Causal diagrams can provide a starting point for identifying variables that must be measured and controlled to(More)
It has long been known that stratifying on variables affected by the study exposure can create selection bias. More recently it has been shown that stratifying on a variable that precedes exposure and disease can induce confounding, even if there is no confounding in the unstratified (crude) estimate. This paper examines the relative magnitudes of these(More)
Standard categorical analysis is based on an unrealistic model for dose-response and trends and does not make efficient use of within-category information. This paper describes two classes of simple alternatives that can be implemented with any regression software: fractional polynomial regression and spline regression. These methods are illustrated in a(More)
Concepts of cause and causal inference are largely self-taught from early learning experiences. A model of causation that describes causes in terms of sufficient causes and their component causes illuminates important principles such as multi-causality, the dependence of the strength of component causes on the prevalence of complementary component causes,(More)
We discuss methods for summarizing epidemiologic studies of dose-response. The data from such a study typically appear as a series of dose-specific relative risks, with one category serving as the common reference group. We present methods for estimating the dose-response parameters from single and multiple study reports, for assigning levels to exposure(More)
Non-identifiability of parameters is a well-recognized problem in classical statistics, and Bayesian statisticians have long recognized the importance of exchangeability assumptions in making statistical inferences. A seemingly unrelated problem in epidemiology is that of confounding: bias in estimation of the effects of an exposure on disease risk, due to(More)