Sandep Yadav

Learn More
Cyclophilin proteins are the members of immunophillin group of proteins, known for their property of binding to the immune-suppressant drug cyclosporin A, hence named as cyclophilins. These proteins are characterized by the presence of peptidyl prolyl isomerase (PPIase) domain which catalyzes the cis-trans isomerisation process of proline residues. In the(More)
Plant Ca(2+)ATPases regulate many signalling pathways which are important for plant growth, development and abiotic stress responses. Our previous work identified that overexpression of OsACA6 confers salinity and drought tolerance in tobacco. In the present work we report, the function of OsACA6 in cold stress tolerance in transgenic tobacco plants. The(More)
Plant cells and tissues remain always on risk under abiotic and biotic stresses due to increased production of reactive oxygen species (ROS). Plants protect themselves against ROS induced oxidative damage by the upregulation of antioxidant machinery. Out of many components of antioxidant machinery, glutathione reductase (GR, EC 1.6.4.2) and glutathione(More)
Salinity severely affects the growth/productivity of rice, which is utilized as major staple food crop worldwide. PDH45 (pea DNA helicase 45), a member of the DEAD-box helicase family, actively provides salinity stress tolerance, but the mechanism behind this is not well known. Therefore, in order to understand the mechanism of stress tolerance, sodium ion(More)
The Plant Ca(2+)ATPases are members of the P-type ATPase superfamily and play essential roles in pollen tube growth, vegetative development, inflorescence architecture, stomatal opening or closing as well as transport of Ca(2+), Mn(2+) and Zn(2+). Their role in abiotic stress adaptation by activation of different signaling pathways is emerging. In(More)
BACKGROUND CuZn-Superoxide dismutase (SOD) is a unique enzyme, which can catalyzes the dismutation of inevitable metabolic product i.e.; superoxide anion into molecular oxygen and hydrogen peroxide. The enzyme has gained wide interest in pharmaceutical industries due to its highly acclaimed antioxidative properties. The recombinant expression of this(More)
This study demonstrates a dose-dependent response of Trichoderma harzianum Th-56 in improving drought tolerance in rice by modulating proline, SOD, lipid peroxidation product and DHN / AQU transcript level, and the growth attributes. In the present study, the effect of colonization of different doses of T. harzianum Th-56 strain in rice genotypes were(More)
  • 1