Sandeep Somani

Learn More
Molecular dynamics simulations reveal that the hydrophobic cavity in human cytokine Interleukin-1beta is hydrated and can dynamically accommodate between one and four water molecules. These waters have residence times >> 500 ps and can give rise to detectable NOEs, in agreement with NMR observations of Ernst et al. (Science 1995; 267:1813-1817). The waters(More)
Configurational entropy is thought to influence biomolecular processes, but there are still many open questions about this quantity, including its magnitude, its relationship to molecular structure, and the importance of correlation. The mutual information expansion (MIE) provides a novel and systematic approach to extracting configurational entropy changes(More)
We present an approximation to a molecule's N-dimensional conformational probability density function (pdf) in terms of marginal pdfs of highest order l, where l is much less than N. The approximation is constructed as a product of conditional pdfs derived by recursive application of the generalized Kirkwood superposition approximation. Furthermore, an(More)
The free energy of a molecular system can, at least in principle, be computed by thermodynamic perturbation from a reference system whose free energy is known. The convergence of such a calculation depends critically on the conformational overlap between the reference and the physical systems. One approach to defining a suitable reference system is to(More)
The superposition approximations (SAs), first proposed in the distribution function theories of liquids, are a family of approximations to a multivariate probability distribution function (pdf) in terms of its lower order marginal pdfs. In this talk, we first present the relationship between various forms of SA, the measurement of correlation via mutual(More)
We compare different approaches for computing the thermodynamics of biomolecular systems. Techniques based on parallel replicas evolving via molecular dynamics or Monte Carlo simulations produce overlapping histograms for the densities of states. In contrast, energy landscape methods employ a superposition partition function constructed from local minima of(More)
Therapeutic concepts exploiting tumor-specific antibodies are often established in pre-clinical xenograft models using immuno-deficient mice. More complex therapeutic paradigms, however, warrant the use of immuno-competent mice, that more accurately capture the relevant biology that is being exploited. These models require the use of (surrogate) mouse or(More)
We present a conformational factorization approach. The theory is based on a superposition partition function, decomposed as a sum over contributions from local minima. The factorisation greatly reduces the number of minima that need to be considered, by employing the same local configurations for groups that are sufficiently distant from the binding site.(More)
We present two methods for barrierless equilibrium sampling of molecular systems based on the recently proposed Kirkwood method (J. Chem. Phys. 2009, 130, 134102). Kirkwood sampling employs low-order correlations among internal coordinates of a molecule for random (or non-Markovian) sampling of the high dimensional conformational space. This is a(More)
  • 1