Sanaz Alali

Learn More
We present a quantitative study of depolarization in biological tissues and correlate it with measured optical properties (reduced scattering and absorption coefficients). Polarized light imaging was used to examine optically thick samples of both isotropic (liver, kidney cortex, and brain) and anisotropic (cardiac muscle, loin muscle, and tendon) pig(More)
We here investigate polarimetric behavior of thick samples of porcine liver, Intralipid, and microsphere-based tissue phantoms whose absorption and scattering properties are matched. Using polarized light we measured reflection mode Mueller matrices and derived linear/circular/total depolarization rates, based on polar decomposition. According to our(More)
We report a rapid time-gated full Stokes imaging approach without mechanically moving parts, which is well-suited for biomedical applications, using two photoelastic modulators (PEMs). A charge-coupled device (CCD) with microsecond time-gating capability was used to acquire the images. To synchronize the CCD with the PEMs, thus gaining signal-to-noise ratio(More)
The structural anisotropy of biological tissues can be quantified using polarized light imaging in terms of birefringence; however, birefringence varies axially in anisotropic layered tissues. This may present ambiguity in result interpretation for techniques whose birefringence results are averaged over the sampling volume. To explore this issue, we(More)
Microstructural remodelling in epithelial layers of various hollow organs, including changes in tissue anisotropy, are known to occur under mechanical distension and during disease processes. In this paper, we analyze how bladder distension alters wall anisotropy using polarized light imaging (followed by Mueller matrix decomposition). Optical retardance(More)
Polarized light point measurements and wide-field imaging have been studied for many years in an effort to develop accurate and information-rich tissue diagnostic methods. However, the extensive depolarization of polarized light in thick biological tissues has limited the success of these investigations. Recently, advances in technology and conceptual(More)
A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes(More)
Partial bladder outlet obstruction causes prominent morphological changes in the bladder wall, which leads to bladder dysfunction. In this paper, we demonstrate that polarized light imaging can be used to identify the location of obstruction induced structural changes that other imaging modalities fail to detect. We induced 2-week and 6-week partial outlet(More)
We investigate the form of the image of a finite sized spherical particle in confocal and conventional microscopes when the illuminating light has an arbitrary polarization. In particular, we take the cases of radial and azimuthal polarizations and use the Mie theory to find the scattered field from differently sized particles for these cases. We present(More)
Obtaining a desired field in the focal plane of a high aperture lens is of much interest in applications such as particles trapping and imaging. The forward problem of finding the field at the focus of a high aperture lens for an arbitrary polarized incident wave is routine and was first discussed by Richards and Wolf [1]. The inverse problem of finding the(More)