Samyam Rajbhandari

Learn More
In this paper, we introduce the Dynamic Load-balanced Tensor Contractions (DLTC), a domain-specific library for efficient task parallel execution of tensor contraction expressions, a class of computation encountered in quantum chemistry and physics. Our framework decomposes each contraction into smaller unit of tasks, represented by an abstraction referred(More)
Tensor contractions are extremely compute intensive generalized matrix multiplication operations encountered in many computational science fields, such as quantum chemistry and nuclear physics. Unlike distributed matrix multiplication, which has been extensively studied, limited work has been done in understanding distributed tensor contractions. In this(More)
The four-index integral transform is a fundamental and computationally demanding calculation used in many computational chemistry suites such as NWChem. It transforms a four-dimensional tensor from one basis to another. This transformation is most efficiently implemented as a sequence of four tensor contractions that each contract a four- dimensional tensor(More)
Loop fusion is a key program transformation for data locality optimization that is implemented in production compilers. But optimizing compilers for imperative languages currently cannot ex- ploit fusion opportunities across a set of recursive tree traversal computations with producer-consumer relationships. In this paper, we develop a compile-time approach(More)
  • 1