Learn More
Intranuclear lipid metabolism modifications in relation to cell proliferation and/or apoptosis were demonstrated in hepatocytes. The aim of this study was to establish whether nuclear lipid metabolites influence cell function in different experimental models using a rat thyroid cell line (FRTL-5) treated with UV-C radiation. After UV-C irradiation cells(More)
Despite recent advances in the understanding of the role of 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) in the CNS, the mechanism of action remains obscure. We demonstrate that some 1,25-(OH)(2)D(3) receptor (VDR) is localized in the cell nucleus in specialized microdomains enriched in sphingomyelin and cholesterol; the integrity of these microdomains is(More)
The action of dexamethasone is initiated by, and strictly dependent upon, the interaction of the drug with its receptor followed by its translocation into the nucleus where modulates gene expression. Where the drug localizes at the intranuclear level is not yet known. We aimed to study the localization of the drug in nuclear lipid microdomains rich in(More)
Lipid microdomains localized in the inner nuclear membrane are considered platforms for active chromatin anchoring. Stimuli such as surgery, vitamin D, or glucocorticoid drugs influence their gene expression, DNA duplication, and RNA synthesis. In this study, we used ultrafast liquid chromatography-tandem mass spectrometry to identify sphingomyelin (SM)(More)
Nuclear lipid metabolism is involved in the regulation of cell proliferation. Modulation of the expression and activity of nuclear PI-phospholipase C (PI-PLC) has been reported during liver regeneration after partial hepatectomy, although it has not been determined whether different PLC isoforms play specific roles in the regulation of cell cycle(More)
BACKGROUND/AIMS Phospholipids and cholesterol in chromatin have been previously demonstrated. The lipid fraction changes during cell proliferation in relation to activation of enzymes of phospholipid metabolism. The aim of the present work is to clarify if chromatin lipids may derive or not from nuclear matrix and if they have different roles. METHODS The(More)
Hormonal changes in humans during spaceflight have been demonstrated but the underlying mechanisms are still unknown. To clarify this point thyroid and testis/epididymis, both regulated by anterior pituitary gland, have been analyzed on long-term space-exposed male C57BL/10 mice, either wild type or pleiotrophin transgenic, overexpressing osteoblast(More)
Nuclear sphingomyelin is a key molecule for cell proliferation. This molecule is organized with cholesterol and proteins to form specific lipid microdomains bound to the inner nuclear membrane where RNA is synthesized. Here, we have reported the ability of the sphingomyelin present in the nuclear microdomain to bind DNA and regulate its synthesis, and to(More)
Sphingomyelin (SM) cycle has been involved in the regulation of proliferation, differentiation, and apoptosis. Increases in ceramide have been found after a larger number of apoptotic stimuli including cytokines, cytotoxic drugs, and environmental stresses. Accumulating evidence suggest that the subcellular localization of ceramide generation is a critical(More)
It is generally known that bone loss is one of the most important complications for astronauts who are exposed to long-term microgravity in space. Changes in blood flow, systemic hormones, and locally produced factors were indicated as important elements contributing to the response of osteoblastic cells to loading, but research in this field still has many(More)