Samuel L. Mensah

Learn More
ZnO can appear as nanowires, nanobelts, and nanocombs, which are attractive for various applications. However, this has prevented the growth of desired nanostructures without other trace morphologies. Here we demonstrated a mechanism for selective growth of pure and long ZnO nanowires. This was obtained by placing a gold film at a high-temperature zone so(More)
We present growth studies of InSb nanowires grown directly on [Formula: see text] and [Formula: see text] substrates. The nanowires were synthesized in a chemical beam epitaxy (CBE) system and are of cubic zinc blende structure. To initiate nanowire nucleation we used lithographically positioned silver (Ag) seed particles. Up to 87% of the nanowires(More)
—Nanotubes represent a unique class of materials in which all atoms are located near the surface. Since electrons flowing through nanotubes are confined near the surface, nan-otubes are attractive for sensing biological and chemical molecules. In addition, their tubular structures enable nanofluidic devices that are useful for novel sensing applications. In(More)
We report on the growth of GaSb nanotrees on InAs { ̅1 ̅1 ̅1}(B) substrates by chemical beam epitaxy. GaSb nanotrees form by the nucleation of Ga droplets on the surface of < ̅1 ̅1 ̅1>(B) oriented GaSb nanowires followed by the epitaxial growth of branches catalyzed by these Ga droplets. In the tip region, the trunks of the GaSb nanotrees are periodically(More)
One-dimensional (1D) semiconductor nanostructures are promising building blocks for future nanoelectronic and nanophotonic devices. ZnO has proven to be a multifunctional and multistructural nanomaterial with promising properties. Here we report the growth of ZnO nanosquids which can be directly grown on planar oxidized Si substrates without using catalysts(More)
  • 1