Learn More
Two ternary complexes of rat DNA polymerase beta (pol beta), a DNA template-primer, and dideoxycytidine triphosphate (ddCTP) have been determined at 2.9 A and 3.6 A resolution, respectively. ddCTP is the triphosphate of dideoxycytidine (ddC), a nucleoside analog that targets the reverse transcriptase of human immunodeficiency virus (HIV) and is at present(More)
DNA polymerase beta (pol beta) fills single nucleotide (nt) gaps in DNA produced by the base excision repair pathway of mammalian cells. Crystal structures have been determined representing intermediates in the 1 nt gap-filling reaction of pol beta: the binary complex with a gapped DNA substrate (2.4 A resolution), the ternary complex including ddCTP (2.2(More)
Although oxidative damage has long been associated with ageing and neurological disease, mechanistic connections of oxidation to these phenotypes have remained elusive. Here we show that the age-dependent somatic mutation associated with Huntington's disease occurs in the process of removing oxidized base lesions, and is remarkably dependent on a single(More)
Synthesis of DNA by DNA polymerase-beta is distributive on single-stranded DNA templates, but short DNA gaps with a 5' PO4 in the gap are filled processively to completion. In vitro studies have suggested a role of beta-polymerase in different types of DNA repair. However, the significance of these studies to the in vivo role of beta-polymerase has remained(More)
Structures of DNA polymerase (pol) beta bound to single-nucleotide gapped DNA had revealed that the lyase and pol domains form a "doughnut-shaped" structure altering the dNTP binding pocket in a fashion that is not observed when bound to non-gapped DNA. We have investigated dNTP binding to pol beta-DNA complexes employing steady-state and pre-steady-state(More)
The paradigm for repair of oxidized base lesions in genomes via the base excision repair (BER) pathway is based on studies in Escherichia coli, in which AP endonuclease (APE) removes all 3' blocking groups (including 3' phosphate) generated by DNA glycosylase/AP lyases after base excision. The recently discovered mammalian DNA glycosylase/AP lyases, NEIL1(More)
Oxidative DNA damage causes blocks and errors in transcription and replication, leading to cell death and genomic instability. Although repair mechanisms of the damage have been extensively analyzed in vitro, the actual in vivo repair processes remain largely unknown. Here, by irradiation with an UVA laser through a microscope lens, we have conditionally(More)
The G:U mismatch in genomic DNA mainly arises from deamination of cytosine residues and is repaired by the base excision repair pathway. We found that a bovine testis crude nuclear extract conducts uracil-initiated base excision repair in vitro. A 51-base pair synthetic DNA substrate containing a single G:U mismatch was used, and incorporation of dCMP(More)
The base excision repair pathway (BER) is believed to maintain genomic integrity by repairing DNA damage arising spontaneously or induced by oxidizing and alkylating agents. To establish the role of DNA polymerase beta (beta-pol) in BER and beta-pol-dependent BER in maintaining genomic stability, we have measured the impact of a gene-targeted disruption in(More)
To dissect the effects of the nucleotide-binding and catalytic metal ions on DNA polymerase mechanisms for DNA repair and synthesis, aside from the chemical reaction, we investigate their roles in the conformational transitions between closed and open states and assembly/disassembly of the active site of polymerase beta/DNA complexes before and after the(More)