Samuel H. Gellman

Learn More
G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a(More)
G-protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that modulate biological function by initiating cellular signalling in response to chemically diverse agonists. Despite recent progress in the structural biology of GPCRs, the molecular basis for agonist binding and allosteric modulation of these proteins is poorly understood.(More)
The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of(More)
G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β(2) adrenergic receptor (β(2)AR)(More)
Autonomously folding beta-hairpins have recently emerged as powerful tools for elucidating the origins of antiparallel beta-sheet folding preferences. Analysis of such model systems has suggested four potential sources of beta-sheet stability: (1) the conformational propensity of the loop segment that connects adjacent strands; (2) favorable contacts(More)
Use of model systems to explore the forces that control beta sheet formation was stymied for many years by the perception that small increments of beta sheet necessarily aggregate. Recently, however, a number of short peptides (9-16 residues in length) that fold into two-stranded antiparallel beta sheets ('beta hairpins') have been reported; several short(More)
Proteins and RNA are unique among known polymers in their ability to adopt compact and well-defined folding patterns. These two biopolymers can perform complex chemical operations such as catalysis and highly selective recognition, and these functions are linked to folding in that the creation of an active site requires proper juxtaposition of reactive(More)
Protegrins are short (16-18 residues) cationic peptides from porcine leukocytes that display potent, broad-spectrum antimicrobial activity. Protegrin-1 (PG-1), one of five natural homologues, adopts a rigid beta-hairpin structure that is stabilized by two disulfide bonds. We have previously employed the principles of beta-hairpin design to develop PG-1(More)
Conditions that promote renaturation of an unfolded protein also promote protein aggregation, in many cases, because these competing intramolecular and intermolecular processes are driven by similar networks of noncovalent interactions. The GroEL/GroES system and related biological chaperones facilitate the renaturation of substrate proteins by minimizing(More)