Learn More
Descriptions of receptive fields at subcortical levels of the visual system have mostly considered only the classical receptive field (CRF). A suppressive extraclassical receptive field (ECRF) has been demonstrated in relay cells within the primate lateral geniculate nucleus (LGN), but the quantitative properties and specific influence of the ECRF on the(More)
Prior exposure to a moving grating of high contrast led to a substantial and persistent reduction in the contrast sensitivity of neurons in the lateral geniculate nucleus (LGN) of macaque. This slow contrast adaptation was potent in all magnocellular (M) cells but essentially absent in parvocellular (P) cells and neurons that received input from S cones.(More)
The response of a neuron in striate cortex to an optimally configured visual stimulus is generally reduced when the stimulus is enlarged to encroach on a suppressive region that surrounds its classical receptive field (CRF). To characterize the mechanism that gives rise to this suppression, we measured its spatiotemporal tuning, its susceptibility to(More)
Although the response of a neuron in the visual cortex generally grows nonlinearly with contrast, the spatial tuning of the cell remains stable. This is thought to reflect the activity of a contrast gain control ("normalization") that has very broad tuning on the relevant stimulus dimension. Contrast invariant tuning on a particular dimension is probably(More)
1. The receptive field dimensions, contrast sensitivity and linearity of spatial summation of koniocellular (KC), parvocellular (PC) and magnocellular (MC) cells in the lateral geniculate nucleus (LGN) of 11 adult marmosets were measured using achromatic sinusoidal gratings. 2. The receptive field centre diameter of cells in each (PC, KC and MC) class(More)
Stimulation of the suppressive surround of a cortical neuron affects the responsivity and tuning of the classical receptive field (CRF) on several stimulus dimensions. In V1 and V2 of macaques prepared for acute electrophysiological experiments, we explored the chromatic sensitivity of the surround and its influence on the chromatic tuning of the CRF. We(More)
Developments in microfabrication technology have enabled the production of neural electrode arrays with hundreds of closely spaced recording sites, and electrodes with thousands of sites are under development. These probes in principle allow the simultaneous recording of very large numbers of neurons. However, use of this technology requires the development(More)
In the lateral geniculate nucleus of macaque, we recorded from neurons with substantial input from S-cones and found that, on several important dimensions, the properties of neurons that receive inhibitory input from S-cones ("S-") are quite unlike those of neurons that receive excitatory input from S-cones ("S+"). First, the organization of chromatic(More)
Visual abilities change over the visual field. For example, our ability to detect movement is better in peripheral vision than in foveal vision, but colour discrimination is markedly worse. The deterioration of colour vision has been attributed to reduced colour specificity in cells of the midget, parvocellular (PC) visual pathway in the peripheral retina.(More)
The modulation sensitivity of visual neurons can be influenced by remote stimuli which, when presented alone, cause no change in the ongoing discharge rate of the neuron. We show here that the extraclassical surrounds that underlie these effects are present in magnocellular-pathway (MC) but not in parvocellular-pathway (PC) retinal ganglion cells of the(More)