Samuel Cartinhour

Learn More
A total of 2414 new di-, tri- and tetra-nucleotide non-redundant SSR primer pairs, representing 2240 unique marker loci, have been developed and experimentally validated for rice (Oryza sativa L.). Duplicate primer pairs are reported for 7% (174) of the loci. The majority (92%) of primer pairs were developed in regions flanking perfect repeats > or = 24 bp(More)
We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence(More)
Gramene ( is a comparative genome mapping database for grasses and a community resource for rice. Rice, in addition to being an economically important crop, is also a model monocot for understanding other agronomically important grass genomes. Gramene replaces the existing AceDB database 'RiceGenes' with a relational database based on(More)
The ability of Pseudomonas syringae pv. tomato DC3000 to parasitize tomato and Arabidopsis thaliana depends on genes activated by the HrpL alternative sigma factor. To support various functional genomic analyses of DC3000, and specifically, to identify genes involved in pathogenesis, we developed a draft sequence of DC3000 and used an iterative process(More)
Gramene ( is a comparative genome database for cereal crops and a community resource for rice. We are populating and curating Gramene with annotated rice (Oryza sativa) genomic sequence data and associated biological information including molecular markers, mutants, phenotypes, polymorphisms and Quantitative Trait Loci (QTL). In(More)
For many species, multiple maps are available, often constructed independently by different research groups using different sets of markers and different source material. Integration of these maps provides a higher density of markers and greater genome coverage than is possible using a single study. In this article, we describe a novel approach to comparing(More)
To fully understand how bacteria respond to their environment, it is essential to assess genome-wide transcriptional activity. New high-throughput sequencing technologies make it possible to query the transcriptome of an organism in an efficient unbiased manner. We applied a strand-specific method to sequence bacterial transcripts using Illumina's(More)
The ability of Pseudomonas syringae pv. phaseolicola to cause halo blight of bean is dependent on its ability to translocate effector proteins into host cells via the hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To identify genes encoding type III effectors and other potential virulence factors that are regulated by the(More)
Bacteria that survive under variable conditions possess an assortment of genetic regulators to meet these challenges. The group IV or extracytoplasmic function (ECF) sigma factors regulate gene expression in response to specific environmental signals by altering the promoter specificity of RNA polymerase. We have undertaken a study of PvdS, a group IV sigma(More)
Pseudomonas syringae strains translocate large and distinct collections of effector proteins into plant cells via the type III secretion system (T3SS). Mutations in T3SS-encoding hrp genes are unable to elicit the hypersensitive response or pathogenesis in nonhost and host plants, respectively. Mutations in individual effectors lack strong phenotypes, which(More)