Samuel Bredeson

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
Electrode arrays used in neural recording and stimulation applications must be implanted carefully to minimize damage to the underlying tissue. A device has been designed to improve a surgeon's control over implantation parameters including depth, insertion velocity, and insertion force. The device has been designed to operate without contacting tissue and(More)
— Wireless stimulation of neural tissue could enable many emerging neural prosthesis designs, and eliminate problems associated with percutaneous wires and connectors. Our laboratory has developed a 16-channel wireless floating microelectrode array (WFMA) for chronic implantation. Here, we report on its first use within in-vivo experiments, using a rat(More)
The long-term reliability of neural recording and stimulation electrode arrays is becoming the limiting factor for neural interfaces. For effective electrode design, electrical connection to the surrounding neural tissue and fluid should be limited to the electrode tips, with all other leakage currents minimized. It is the goal of this study to identify and(More)
Here, we report on chronic in-vivo testing of a 16-channel wireless floating microelectrode array (WFMA) in a rat sciatic nerve model. Muscle threshold currents, charge injection levels, and charge density were monitored for electrodes of two WFMA devices implanted into animal subjects over a five month period. This type of wireless stimulation device could(More)
Functional stability and in-vivo reliability are significant factors determining the longevity of a neural interface. In this ongoing study, we test the performance of a wireless floating microelectrode array (WFMA) over a period of 143 days. The topography of the microelectrodes has allowed for selective stimulation of different fascicles of the rat(More)
An instrument designed for the implantation of neural electrode array devices has been refined in preparation for use in cortical implantation procedures in non-human primates. This instrument has undergone extensive testing to ensure its successful first use in a live surgical setting. This work describes the modifications made to the instrument and the(More)
  • 1