Learn More
Pavlovian fear conditioning, a simple form of associative learning, is thought to involve the induction of associative, NMDA receptor-dependent long-term potentiation (LTP) in the lateral amygdala. Using a combined genetic and electrophysiological approach, we show here that lack of a specific GABA(B) receptor subtype, GABA(B(1a,2)), unmasks a(More)
Alpha-synuclein (alphaSN) brain pathology is a conspicuous feature of several neurodegenerative diseases. These include prevalent conditions such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and the Lewy body variant of Alzheimer's disease (LBVAD), as well as rarer conditions including multiple systems atrophy (MSA), and neurodegeneration(More)
The CA1 region of the hippocampus was dissected from WT, 1a-/-and 1b-/-mice as described (Lein et al., 2004). Proteins were extracted and the S1 fraction collected as described previously (Gassmann et al., 2004; Lein et al., 2004). Protein concentrations of individual samples were adjusted using the Bradford assay (Bio-Rad, Hercules, CA). 2.5µg of protein(More)
GABAB receptors are the G protein-coupled receptors for the main inhibitory neurotransmitter in the brain, gamma-aminobutyric acid (GABA). Molecular diversity in the GABAB system arises from the GABAB1a and GABAB1b subunit isoforms that solely differ in their ectodomains by a pair of sushi repeats that is unique to GABAB1a. Using a combined genetic,(More)
The presynaptic protein alpha-synuclein is a prime suspect for contributing to Lewy pathology and clinical aspects of diseases, including Parkinson's disease, dementia with Lewy bodies, and a Lewy body variant of Alzheimer's disease. alpha-Synuclein accumulates in Lewy bodies and Lewy neurites, and two missense mutations (A53T and A30P) in the(More)
GABAB receptors mediate slow synaptic inhibition in the nervous system. In transfected cells, functional GABAB receptors are usually only observed after coexpression of GABAB(1) and GABAB(2) subunits, which established the concept of heteromerization for G-protein-coupled receptors. In the heteromeric receptor, GABAB(1) is responsible for binding of GABA,(More)
The discovery of two missense mutations (A53T and A30P) in the gene encoding the presynaptic protein alpha-synuclein (alphaSN) that are genetically linked to rare familial forms of Parkinson's disease and its accumulation in Lewy bodies and Lewy neurites has triggered several attempts to generate transgenic mice overexpressing human alphaSN. Analogous to a(More)
The presynaptic protein ␣-synuclein is a prime suspect for contributing to Lewy pathology and clinical aspects of diseases, including Parkinson's disease, dementia with Lewy bodies, and a Lewy body variant of Alzheimer's disease. ␣-Synuclein accumulates in Lewy bodies and Lewy neurites, and two missense mutations (A53T and A30P) in the ␣-synuclein gene are(More)
GABA(B) receptors are the G-protein-coupled receptors for the neurotransmitter GABA. GABA(B) receptors are broadly expressed in the nervous system. Their complete absence in mice causes premature lethality or--when mice are viable--epilepsy, impaired memory, hyperalgesia, hypothermia, and hyperactivity. A spatially and temporally restricted loss of GABA(B)(More)
α-Synuclein (αSN) in human is tightly linked both neuropathologically and genetically to Parkinson's disease (PD) and related disorders. Disease-causing properties in vivo of the wildtype mouse ortholog (mαSN), which carries a threonine at position 53 like the A53T human mutant version that is genetically linked to PD, were never reported. To this end we(More)