Samuel A. Oguntayo

Learn More
A mouse model of repeated blast exposure was developed using a compressed air-driven shock tube, to study the increase in severity of traumatic brain injury (bTBI) after multiple blast exposures. Isoflurane anesthetized C57BL/6J mice were exposed to 13.9, 20.6, and 25 psi single blast overpressure (BOP1) and allowed to recover for 5 days. BOP1 at 20.6 psi(More)
The toxicity of organophosphorous (OP) nerve agents is attributed to their irreversible inhibition of acetylcholinesterase (AChE), which leads to excessive accumulation of acetylcholine (ACh) and is followed by the release of excitatory amino acids (EAA). EAAs sustain seizure activity and induce neuropathology due to over-stimulation of N-methyl-d-aspartate(More)
Use of improvised explosive devices has significantly increased the incidence of traumatic brain injury (TBI) and associated neuropsychiatric deficits in the recent wars in Iraq and Afghanistan. Acute deleterious effects of single and repeated blast exposure can lead to long-term neurobiological effects and neuropsychiatric deficits. Using in vitro and in(More)
Explosive blast results in multiple organ injury and polytrauma, the intensity of which varies with the nature of the exposure, orientation, environment and individual resilience. Blast overpressure alone may not precisely indicate the level of body or brain injury after blast exposure. Assessment of the extent of body injury after blast exposure is(More)
Dephosphorylation of phosphorylated Tau (pTau) protein, which is essential for the preservation of neuronal microtubule assemblies and for protection against trauma-induced tauopathy and chronic traumatic encephalopathy (CTE), is primarily achieved in brain by tissue non-specific alkaline phosphatase (TNAP). Paired helical filaments (PHFs) and Tau isolated(More)
The chemical warfare nerve agent (CWNA) soman irreversibly inhibits acetylcholinesterase (AChE) causing seizure, neuropathology and neurobehavioral deficits. Pyridostigmine bromide (PB), the currently approved pretreatment for soman, is a reversible AChE inhibitor that does not cross the blood–brain barrier (BBB) to protect against central nervous system(More)
Cholinergic activity has been recognized as a major regulatory component of stress responses after traumatic brain injury (TBI). Centrally acting acetylcholinesterase (AChE) inhibitors are also being considered as potential therapeutic candidates against TBI mediated cognitive impairments. We have evaluated the expression of molecules involved in(More)
Respiratory toxicity and lung injury following inhalation exposure to chemical warfare nerve agent soman was examined in guinea pigs without therapeutics to improve survival. A microinstillation inhalation exposure technique that aerosolizes the agent in the trachea was used to administer soman to anesthetized age and weight matched male guinea pigs.(More)
Acetylcholinesterase (AChE) which catalyzes the hydrolysis of the neurotransmitter acetylcholine has been recognized as one of the major regulators of stress responses after traumatic brain injury (TBI). Repeated blast exposure induces TBI (blast TBI) with a variable neuropathology at different brain regions. Since AChE inhibitors are being used as a line(More)
Glial fibrillary acidic protein (GFAP), a protein enriched in astrocytes, and Tau, a protein abundant in neuronal microtubules, are being widely studied as biomarkers of brain injury, and persistent severity-dependent increases in brain and blood have been reported. Studies on the acute changes of these proteins after blast exposure are limited. Using a(More)