Learn More
The image contrast in magnetic resonance imaging (MRI) is highly sensitive to several mechanisms that are modulated by the properties of the tissue environment. The degree and type of contrast weighting may be viewed as image filters that accentuate specific tissue properties. Maps of quantitative measures of these mechanisms, akin to(More)
Multifunctional and water-soluble superparamagnetic iron oxide (SPIO) nanocarriers were developed for targeted drug delivery and positron emission tomography/magnetic resonance imaging (PET/MRI) dual-modality imaging of tumors with integrin α(v)β₃ expression. An anticancer drug was conjugated onto the PEGylated SPIO nanocarriers via pH-sensitive bonds.(More)
A multifunctional stable and pH-responsive polymer vesicle nanocarrier system was developed for combined tumor-targeted delivery of an anticancer drug and superparamagnetic iron oxide (SPIO) nanoparticles (NPs). These multifunctional polymer vesicles were formed by heterofunctional amphiphilic triblock copolymers, that is, R (folate (FA) or(More)
PURPOSE Diffusion MRI measurements are typically acquired sequentially with unit gradient directions that are distributed uniformly on the unit sphere. The ordering of the gradient directions has significant effect on the quality of dMRI-derived quantities. Even though several methods have been proposed to generate optimal orderings of gradient directions,(More)
BACKGROUND The efficacy and safety of intracerebral gene therapy for brain disorders like Parkinson's disease depends on the appropriate distribution of gene expression. OBJECTIVES To assess whether the distribution of gene expression is affected by vector titer and protein type. METHODS Four adult macaque monkeys seronegative for adeno-associated virus(More)
Stable and tumor-targeting multifunctional wormlike polymer vesicles simultaneously loaded with superparamagnetic iron oxide (SPIO) nanoparticles (NPs) as magnetic resonance imaging (MRI) contrast agent and anticancer drug doxorubicin (DOX) were developed for targeted cancer therapy and ultrasensitive MR imaging. These multifunctional wormlike polymer(More)
Introduction: Multi-component Driven Equilibrium Single-Pulse Observation of T1 and T2 (mcDESPOT) [1] is a recently proposed technique which provides two-component relaxometry using steady-state imaging. By modeling signal contributions from both slow and fast relaxing spins, the relative fraction of water in two microstructural compartments may be(More)
A new time-efficient and accurate technique for simultaneous mapping of T(1) and B(1) is proposed based on a combination of the actual flip angle (FA) imaging and variable FA methods. Variable FA-actual FA imaging utilizes a single actual FA imaging and one or more spoiled gradient-echo acquisitions with a simultaneous nonlinear fitting procedure to yield(More)
Alterations to myelin may be a core pathological feature of neurodegenerative diseases. Although white matter microstructural differences have been described in Parkinson's disease (PD), it is unknown whether such differences include alterations of the brain's myelin content. Thus, the objective of the current study is to measure and compare brain myelin(More)