Learn More
OBJECTIVE Evaluate spectral scaling properties of scalp electroencephalogram (EEG) and electromyogram (EMG), optimal spacing of electrodes, and strategies for mitigating EMG. METHODS EEG was recorded referentially from 9 subjects with a 64 channel linear array (electrodes 3mm apart) placed parasagittally or transversely on forehead or occiput, at rest(More)
While enormous resources have been recently invested into the development of a variety of neuroimaging techniques, the bandwidth of the clinical EEG, originally set by trivial technical limitations, has remained practically unaltered for over 50 years. An increasing amount of evidence shows that salient EEG signals are observed beyond the bandwidth of the(More)
OBJECTIVE To transfer to the clinic for humans the technology and theory for high-resolution EEG analysis that have been developed in the laboratory with animals. METHODS EEGs were recorded at high spatial resolution from a 1 x 1 cm 8 x 8 electrode array on the right inferior temporal gyrus of a patient undergoing preoperative monitoring for epilepsy(More)
Long-term video electroencephalographic (EEG) recording is currently a routine procedure in the presurgical evaluation of localization-related epilepsies. Cortical epileptogenic zone is usually localized from ictal recordings with intracranial electrodes, causing a significant burden to patients and health care. Growing literature suggests that(More)
Slow shifts in the human scalp-recorded EEG, including those related to changes in brain CO(2) levels, have been generally assumed to result from changes in the level of tonic excitation of apical dendrites of cortical pyramidal neurons. We readdressed this issue using DC-EEG shifts elicited in healthy adult subjects by hypo- or hypercapnia. A 3-min period(More)
New bedside long-term DC-coupled EEG techniques have demonstrated that infraslow (<0.5 Hz) activity lateralizes temporal lobe seizures (Vanhatalo, S., Holmes, M.D., Tallgren, P., Voipio, J., Kaila, K., Miller, J.W., 2003a. Very slow EEG responses indicate the laterality of temporal lobe seizures: a DC-EEG study. Neurology 60, 1098-1104). However, even high(More)
After having been in routine use for about half a century, neonatal EEG is currently facing unprecedented challenges in assessing and monitoring brain function during intensive care of preterm babies. It has therefore become increasingly important to understand the neurophysiological processes underlying EEG activity, as well as to identify those features(More)
Spontaneous transients of correlated activity are a characteristic feature of immature brain structures, where they are thought to be crucial for the establishment of precise neuronal connectivity. Studies on experimental animals have shown that this kind of early activity in cortical structures is composed of long-lasting, intermittent network events,(More)
Febrile seizures are frequent during early childhood, and prolonged (complex) febrile seizures are associated with an increased susceptibility to temporal lobe epilepsy. The pathophysiological consequences of febrile seizures have been extensively studied in rat pups exposed to hyperthermia. The mechanisms that trigger these seizures are unknown, however. A(More)