Sampo Mäntylahti

Learn More
Extensive resonance overlap exacerbates assignment of intrinsically disordered proteins (IDPs). This issue can be circumvented by utilizing (15)N, (13)C' and (1)H(N) spins, where the chemical shift dispersion is mainly dictated by the characteristics of consecutive amino acid residues. Especially (15)N and (13)C' spins offer superior chemical shift(More)
We propose a new alpha proton detection based approach for the sequential assignment of natively unfolded proteins. The proposed protocol superimposes on following features: HA-detection (1) enables assignment of natively unfolded proteins at any pH, i.e., it is not sensitive to rapid chemical exchange undergoing in natively unfolded proteins even at(More)
We describe a novel pulse sequence, MQ-HNCO-TROSY, for the measurement of scalar and residual dipolar couplings between amide proton and nitrogen in larger proteins. The experiment utilizes the whole 2T(N) polarization transfer delay for labeling of (15)N chemical shift in a constant time manner, which efficiently doubles the attainable resolution in (15)N(More)
An improved pulse sequence, intraresidual i(HCA)CO(CA)NH, is described for establishing solely (13)C'(i), (15)N(i), (1)HN(i) connectivities in uniformly 15N/13C-labeled proteins. In comparison to the "out-and-back" style intra-HN(CA)CO experiment, the new pulse sequence offers at least two-fold higher experimental resolution in the (13)C' dimension and on(More)
  • 1