Sampo Karkola

Learn More
The steryl ferulate contents of rye and wheat grains and their milling fractions were analyzed using a reversed-phase high-performance liquid chromatographic (HPLC) method. HPLC-mass spectrometry was used for identification. In addition, steryl ferulates of some selected milling byproducts were determined. The total steryl ferulate contents of rye and wheat(More)
Aromatase (CYP450(arom), CYP19) is an enzyme responsible for converting the aliphatic androgens androstenedione and testosterone to the aromatic estrogens estrone and estradiol, respectively. These endogenous hormones are a key factor in cancer tumor formation and proliferation through a cascade starting from estrogen binding to estrogen receptor. To(More)
Androgens are transformed into aromatic estrogens by CYP450 aromatase in a three-step reaction consuming three equivalents of oxygen and three equivalents of NADPH. Estrogens are substrates for nuclear estrogen receptors (ERs) and play a key role in estrogen-dependent tumour cell formation and proliferation. Natural phytoestrogens are proved to be(More)
The 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) enzyme regulates the conversion of estrone (E1) to the biologically active estradiol (E2). Due to its role as a key enzyme in female hormone production, it has emerged as an attractive drug target for inhibitor development in relation to hormone-dependent breast cancer. Herein, we report four(More)
The 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) enzyme plays a crucial role in female hormonal regulation by catalysing the NADPH-dependent reduction of the less potent estrone E1 into the biologically active estradiol E2. Because 17beta-HSD1 is a key enzyme in E2 biosynthesis, it has emerged as an attractive drug target for inhibitor(More)
Many breast tumors are hormone-dependent, and estrogens, especially estradiol (E2), have a pivotal role in their growth and development. 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is a key enzyme in the biosynthesis of female sex steroids, catalyzing the NADPH-dependent reduction of estrone into biologically active estradiol. In this study, a(More)
  • 1