Sampath Sathish

Learn More
Diethyl hexyl phthalate (DEHP) is a plasticizer, commonly used in a variety of products, including lubricants, perfumes, hairsprays and cosmetics, construction materials, wood finishers, adhesives, floorings and paints. DEHP is an endocrine disruptor and it has a continuum of influence on various organ systems in human beings and experimental animals.(More)
Emerging evidences demonstrate that excess aldosterone and insulin interact at target tissues. It has been shown that increased levels of aldosterone contribute to the development of insulin resistance and thus act as a risk factor for the development of type-2 diabetes mellitus. However, the molecular mechanisms involved in this scenario are yet to be(More)
Bisphenol-A (BPA) has been classified as an endocrine disruptor which disrupts normal cell function by acting as an estrogen agonist. Environmentally relevant doses of the Bisphenol-A have profound effects on rat endocrine pancreas, an essential organ involved in glucose homeostasis. Bisphenol-A acts on insulin releasing β-cells whereby it increases the(More)
The estrogenic monomer bisphenol-A (BPA) is an endocrine-disrupting chemical used in the production of epoxy resins, plastic food and beverage containers, leading to ubiquitous human exposure. Environmentally relevant doses of BPA have profound effects on mice endocrine pancreas. It increases pancreatic insulin content and favors postprandial(More)
A postsynaptic neurotoxin was purified from Daboia russelli russelli venom using gel filtration, ion-exchange chromatography and reverse-phase high-performance liquid chromatography. The N-terminal sequence, molecular mass and pharmacological activities of the neurotoxin/cytotoxin indicate that it is a short-chain neurotoxin like that found in Elapid venom.(More)
Aroclor 1254 is the commercial mixture of highly toxic environmental pollutant, polychlorinated biphenyls (PCBs). Being immensely durable, it is extensively used and widely distributed. Studies show that Aroclor 1254 causes a variety of adverse health effects through free radical generation. The present investigation was designed to check the effect of(More)
Due to the toxic pathophysiological role of snake venom phospholipase A2 (PLA2 ), its compelling limitations to anti-venom therapy in humans and the need for alternative therapy foster considerable pharmacological interest towards search of PLA2 specific inhibitors. In this study, an integrated approach involving homology modeling, molecular dynamics and(More)
  • 1