Sampath Kumar Loganathan

Learn More
Three genetic corneal dystrophies [congenital hereditary endothelial dystrophy type 2 (CHED2), Harboyan syndrome and Fuchs endothelial corneal dystrophy] arise from mutations of the SLC4a11 gene, which cause blindness from fluid accumulation in the corneal stroma. Selective transmembrane water conductance controls cell size, renal fluid reabsorption and(More)
PURPOSE Protein misfolding, causing retention of nascent protein in the endoplasmic reticulum (ER), is the most common molecular phenotype for disease alleles of membrane proteins. Strategies are needed to identify therapeutics able to correct such folding/trafficking defects. Mutations of SLC4A11, a plasma membrane transport protein of the human corneal(More)
Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xenopus oocytes or mammalian cells increased water flux(More)
We recently reported a novel form of BMP2, designated nBMP2, which is translated from an alternative downstream start codon and is localized to the nucleus rather than secreted from the cell. To examine the function of nBMP2 in the nucleus, we engineered a gene-targeted mutant mouse model (nBmp2NLS(tm)) in which nBMP2 cannot be translocated to the nucleus.(More)
SLC4A11, a member of the SLC4 family of bicarbonate transporters, is a widely expressed integral membrane protein, abundant in kidney and cornea. Mutations of SLC4A11 cause some cases of the blinding corneal dystrophies, congenital hereditary endothelial dystrophy, and Fuchs endothelial corneal dystrophy. These diseases are marked by fluid accumulation in(More)
  • 1