Learn More
Hypoxic culturing of chondrocytes is gaining increasing interest in cartilage research. Culturing of chondrocytes under low oxygen tension has shown several advantages, among them increased synthesis of extracellular matrix and increased redifferentiation of dedifferentiated chondrocytes. Quantitative gene expression analyses such as quantitative real-time(More)
BACKGROUND AND PURPOSE In vitro expansion of autologous chondrocytes is an essential part of many clinically used cartilage repair treatments. Native chondrocytes reside in a 3-dimensional (3D) network and are exposed to low levels of oxygen. We compared monolayer culture to combined 3D and hypoxic culture using quantitative gene expression analysis. (More)
The purpose of the study was to investigate the effect of dermatan sulphate (DS) addition to biodegradable methoxy polyethylene glycol (MPEG) substituted polylactide-co-glycolic acid (PLGA) scaffolds for cartilage repair in vitro and in vivo. Human chondrocytes from eight patients undergoing anterior cruciate ligament reconstruction were isolated and(More)
Human adipose-derived stromal cells (hASCs) possess the potential for chondrogenic differentiation. Recent studies imply that this differentiation process may be enhanced by culturing the cells in low oxygen tension in combination with three-dimensional (3D) scaffolds. We report the evaluation of the chondrogenic potential of hASC pellets in 5 and 21 % O2(More)
  • 1