Learn More
CpG island hypermethylation and chromatin remodeling play important roles in repression of various genes during malignant transformation. We hypothesized that histone deacetylases (HDACs) and DNA methyltransferases (DNMTase) are associated with prostate cancer and we examined the enzyme activity, gene, and protein expression of HDAC1 and DNMT1 in cell lines(More)
Cancer is one of the most devastating disorders in our lives. Higher rate of proliferation than death of cells is one of the essential factors for development of cancer. The dynamicity of cell membrane plays some vital roles in cell survival and cell death, including protection, endocytosis, signaling, and increases in mechanical stability during cell(More)
The functional relevance of autophagy in tumor formation and progression remains controversial. Autophagy can promote tumor suppression during cancer initiation and protect tumors during progression. Autophagy-associated cell death may act as a tumor suppressor, with several autophagy-related genes deleted in cancers. Loss of autophagy induces genomic(More)
Proteomic studies on anticancer activity of Green Tea Catechins (specifically EGCG) are suggesting a large set of protein targets that may directly interact with EGCG and alter the physiology of diseased cells, including cancer. Of notice, benign cells are usually left untouched. Lipid rafts have been recently recognized as signal processing hubs and(More)
Cytosine methylation at the 5-carbon position is the only known stable base modification found in the mammalian genome. The organization and modification of chromatin is a key factor in programming gene expression patterns. Recent findings suggest that DNA methylation at the junction of transcription initiation and elongation plays a critical role in(More)
DNA methylation is one of the principal epigenetic signals that participate in cell specific gene expression in vertebrates. DNA methylation plays a quintessential role in the control of gene expression, cellular differentiation and development. It also plays a central role in the preservation of chromatin structure and chromosomal integrity, parental(More)
Clusterin (CLU) is an important glycoprotein involved in various cellular functions. Different reports have mentioned that the two isoforms of CLU; secretary (sCLU) and nuclear (nCLU) have opposite (paradoxical) roles in cancer development. sCLU provides pro-survival signal, whereas nCLU is involved in pro-apoptotic signaling. However, the molecular(More)
Cancer cells and tissues exhibit genome wide hypomethylation and regional hypermethylation. CpG-methylation of DNA ((Me)CpG-DNA) is defined as the formation of a C-C covalent bond between the 5'-C of cytosine and the -CH(3) group of S-adenosylmethionine. Removal of the sole -CH(3) group from the methylated cytosine of DNA is one of the many ways of(More)
Recent studies have shown that cytosine-5 methylation at CpG islands in the regulatory sequence of a gene is one of the key mechanisms of inactivation. The enzymes responsible for CpG methylation are DNA methyltransferase (DNMT) 1, DNMT3a, and DNMT3b, and the enzyme responsible for demethylation is DNA demethylase (MBD2). Studies on(More)
Reversible DNA methylation is a fundamental epigenetic manipulator of the genomic information in eukaryotes. DNA demethylation plays a very significant role during embryonic development and stands out for its contribution in molecular reconfiguration during cellular differentiation for determining stem cell fate. DNA demethylation arbitrated extensive(More)