Samina Akbar

Learn More
Salmonella typhimurium is a Gram-negative enteric pathogen that can infect intestinal epithelial cells and induce inflammation of the intestinal mucosa. These processes are mediated by a type III secretion system (TTSS), which is encoded on Salmonella pathogenicity island 1 (SPI1). Previous studies showed that four SPI1-encoded transcriptional regulators,(More)
In Bacillus subtilis, activity of the general stress transcription factor s is controlled posttranslationally by a regulatory network that transmits signals of environmental and metabolic stress. These signals include heat, ethanol, or osmotic challenge, or a sharp decrease in cellular energy levels, and all ultimately control s activity by influencing the(More)
hilA encodes an activator of Salmonella enterica serovar Typhimurium virulence genes and is transcriptionally modulated by environmental conditions. We show that H-NS represses hilA under low-osmolarity conditions. H-NS, HU, and Fis also appear to affect the derepression of hilA by HilD. Modulation of hilA by counteracting repressing and derepressing(More)
Salmonellosis is one of the most common causes of food-borne disease in the United States. Increasing antimicrobial resistance and corresponding increases in virulence present serious challenges. Currently, empirical therapy for invasive Salmonella enterica infection includes either ceftriaxone or ciprofloxacin (E. L. Hohmann, Clin. Infect. Dis. 32:263-269,(More)
Multiple drug resistance (MDR) in bacteria represents a notable problem but if carried on plasmid their spread could become a significant threat to public health. Plasmids in members of the Enterobacteriaceae family and in particular Salmonella and Escherichia coli strains have been implicated in the spread of antibiotic resistance genes. However, the(More)
  • 1