Sami Caner

  • Citations Per Year
Learn More
Trehalose synthase (TreS) catalyzes the reversible conversion of maltose into trehalose in mycobacteria as one of three biosynthetic pathways to this nonreducing disaccharide. Given the importance of trehalose to survival of mycobacteria, there has been considerable interest in understanding the enzymes involved in its production; indeed the structures of(More)
The complex plant flavonol glycoside montbretin A is a potent (Ki = 8 nM) and specific inhibitor of human pancreatic α-amylase with potential as a therapeutic for diabetes and obesity. Controlled degradation studies on montbretin A, coupled with inhibition analyses, identified an essential high-affinity core structure comprising the myricetin and caffeic(More)
Evolutionary advances are often fueled by unanticipated innovation. Directed evolution of a computationally designed enzyme suggests that pronounced molecular changes can also drive the optimization of primitive protein active sites. The specific activity of an artificial retro-aldolase was boosted >4,400-fold by random mutagenesis and screening, affording(More)
Human pancreatic α-amylase (HPA) is responsible for degrading starch to malto-oligosaccharides, thence to glucose, and is therefore an attractive therapeutic target for the treatment of diabetes and obesity. Here we report the discovery of a unique lariat nonapeptide, by means of the RaPID (Random non-standard Peptides Integrated Discovery) system, composed(More)
Starch provides the major source of caloric intake in many diets. Cleavage of starch into malto-oligosaccharides in the gut is catalyzed by pancreatic α-amylase. These oligosaccharides are then further cleaved by gut wall α-glucosidases to release glucose, which is absorbed into the bloodstream. Potential surface binding sites for starch on the pancreatic(More)
As part of a search for selective, mechanism-based covalent inhibitors of human pancreatic α-amylase we describe the chemoenzymatic synthesis of the disaccharide analog α-glucosyl epi-cyclophellitol, demonstrate its stoichiometric reaction with human pancreatic α-amylase and evaluate the time dependence of its inhibition. X-ray crystallographic analysis of(More)
  • 1