Learn More
Novelty detection is the identification of new or unknown data or signal that a machine learning system is not aware of during training. Novelty detection is one of the fundamental requirements of a good classification or identification system since sometimes the test data contains information about objects that were not known at the time of training the(More)
In this paper we investigate a new approach to the classification of mammographic images according to breast type. The classification of breast density in this study is motivated by its use as prior knowledge in the image processing pipeline. By utilising this knowledge at different stages including enhancement, segmen-tation and feature extraction, its(More)
We present a new framework for novelty detection. The framework evaluates neural networks as adaptive classifiers that are capable of novelty detection and retraining on the basis of newly discovered information. We apply our newly developed model to the application area of object recognition in video. We detail the tools and methods needed for novelty(More)
The class of geometric deformable models, also known as level sets, has brought tremendous impact to medical imagery due to its capability of topology preservation and fast shape recovery. In an effort to facilitate a clear and full understanding of these powerful state-of-the-art applied mathematical tools, the paper is an attempt to explore these(More)
For the purposes of forecasting (or classification) tasks neural networks (NNs) are typically trained with respect to Euclidean distance minimization. This is commonly the case irrespective of any other end user preferences. In a number of situations, most notably time series forecasting, users may have other objectives in addition to Euclidean distance(More)