Sameer R. Sonkusale

Learn More
Current-mode algorithmic pipelined Analog-toDigital Converter (ADC) is suitable for sensor applications due to their area and power advantage at low resolutions. In applications of distributed sensing using redundant sensors, the speed and the resolution of the ADC is less important than the energy per bit conversion. In the proposed paper, such performance(More)
This paper illustrates an architectural design of a novel variable input-feature correlated asynchronous sampling and time-encoded digitization approach for source compression and direct feature extraction from physiological signals. The complete architecture represents an analog-to-information (A2I) converter, designed for ultra-low-power mixed-signal(More)
In this paper, a prototype of a telemetry system for battery-less biological implant is implemented, which demonstrates both wireless power delivery and duplex wireless data communication. BPSK (Binary Phase Shift Keying) modulation is used for the data transmission from the external controller to the implant and LSK (Load Shift Keying) modulation is used(More)
This paper describes a technique for digital error correction in pipelined analog-digital converters. It makes use of a slow, high resolution ADC in conjunction with an LMS algorithm to perform error correction in the background during normal conversion. The algorithm will be shown to correct for errors due to capacitor ratio mismatch, finite amplifier gain(More)
This paper discusses the design of an asynchronous analog-to-digital converter targeted for low-power sensing applications. The asynchronous sampling scheme will save power because it only samples the input signal when it is changing. The idea of using an adaptive resolution to increase the maximum input frequency of the ADC is introduced. A prototype chip(More)