Learn More
This article presents an algorithm for the automatic detection of circular shapes from complicated and noisy images without using the conventional Hough transform methods. The proposed algorithm is based on a recently developed swarm intelligence technique, known as the bacterial foraging optimization (BFO). A new objective function has been derived to(More)
Bacterial foraging optimization algorithm (BFOA) has been widely accepted as a global optimization algorithm of current interest for distributed optimization and control. BFOA is inspired by the social foraging behavior of Escherichia coli. BFOA has already drawn the attention of researchers because of its efficiency in solving real-world optimization(More)
Social foraging behavior of Escherichia coli bacteria has recently been explored to develop a novel algorithm for distributed optimization and control. The Bacterial Foraging Optimization Algorithm (BFOA), as it is called now, is currently gaining popularity in the community of researchers, for its effectiveness in solving certain difficult real-world(More)
Very recently bacterial foraging has emerged as a powerful technique for solving optimization problems. In this paper, we introduce a micro-bacterial foraging optimization algorithm, which evolves with a very small population compared to its classical version. In this modified bacterial foraging algorithm, the best bacterium is kept unaltered, whereas the(More)
In his seminal paper published in 2002, Passino pointed out how individual and groups of bacteria forage for nutrients and how to model it as a distributed optimization process, which he called the Bacterial Foraging Optimization Algorithm (BFOA). One of the major driving forces of BFOA is the chemotactic movement of a virtual bacterium that models a trial(More)
—Theoretical analysis of the dynamics of evolutionary algorithms is believed to be very important to understand the search behavior of evolutionary algorithms and to develop more efficient algorithms. In this paper we investigate the dynamics of a canonical Differential Evolution (DE) algorithm with DE/rand/1 type mutation and binomial crossover.(More)
This article presents an algorithm for the automatic detection of circular shapes from complicated and noisy images. The algorithm is based on a hybrid technique composed of simulated annealing and differential evolution. A new fuzzy objective function has been derived for the edge map of a given image. Minimization of this function with a hybrid annealed(More)
Differential Evolution (DE) is well known as a simple and efficient algorithm for global optimization over continuous spaces. This article provides a simple mathematical model of the underlying evolutionary dynamics of a one-dimensional DE. The model relates the search process of DE with the classical gradient descent search and also analyzes the(More)
We study the problem of actuator and sensor placement in a linear advection partial differential equation (PDE). The problem is motivated by its application to actuator and sensor placement in building systems for the control and detection of a scalar quantity such as temperature and contaminants. We propose a gramian based approach to the problem of(More)