Samarth Shankar Raut

Learn More
The current clinical management of abdominal aortic aneurysm (AAA) disease is based to a great extent on measuring the aneurysm maximum diameter to decide when timely intervention is required. Decades of clinical evidence show that aneurysm diameter is positively associated with the risk of rupture, but other parameters may also play a role in causing or(More)
Rupture risk assessment of abdominal aortic aneurysms (AAA) by means of biomechanical analysis is a viable alternative to the traditional clinical practice of using a critical diameter for recommending elective repair. However, an accurate prediction of biomechanical parameters, such as mechanical stress, strain, and shear stress, is possible if the AAA(More)
In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can(More)
Abdominal aortic aneurysm (AAA) is a vascular condition where the use of a biomechanics-based assessment for patient-specific risk assessment is a promising approach for clinical management of the disease. Among various factors that affect such assessment, AAA wall thickness is expected to be an important factor. However, regionally varying patient-specific(More)
  • 1