Samar Mansour

Learn More
Vesicular delivery systems have been reported to serve as local depot for sustained drug release. Aceclofenac multilamellar liposomes and niosomes were prepared and a comparative study was done between them through evaluation of entrapment efficiency, particle size, shape, differential scanning calorimetry and in vitro drug release. A stability study was(More)
The purpose of this study was to prepare lipospheres containing aceclofenac intended for topical skin delivery with the aim of exploiting the favorable properties of this carrier system and developing a sustained release formula to overcome the side effects resulting from aceclofenac oral administration. Lipospheres were prepared using different lipid cores(More)
Niosomes have been reported as a possible approach to improve the low corneal penetration and bioavailability characteristics shown by conventional ophthalmic vehicles. Niosomes formed from Span 40 or Span 60 and cholesterol in the molar ratios of 7:4, 7:6 and 7:7 were prepared using reverse-phase evaporation and thin film hydration methods. The prepared(More)
The objective was to develop a microemulsion formulation for the transdermal delivery of testosterone. Microemulsion formulations were prepared using oleic acid as the oil phase, Tween20 as a surfactant, Transcutol as cosurfactant, and water. The microemulsions were characterized visually, with the polarizing microscope, and by dynamic light scattering. In(More)
Chitosan microspheres are potential drug carriers for maximizing nasal residence time, circumventing rapid mucociliary clearance and enhancing nasal absorption. The aim of the present study was to develop and characterize chitosan mucoadhesive microspheres of verapamil hydrochloride (VRP) for intranasal delivery as an alternative to oral VRP which suffers(More)
Risedronate sodium was formulated into polylactide-co-glycolic acid microspheres for pulmonary delivery using the w/o/w double emulsion technique. Sodium chloride was used as osmogen in either the internal or external aqueous phase to surface-engineer the particles to achieve favorable properties. The prepared microspheres were characterized for the surface(More)
The purpose of this study was to formulate topically effective controlled release ophthalmic acetazolamide liposomal formulations. Reverse-phase evaporation and lipid film hydration methods were used for the preparation of reversephase evaporation (REVs) and multilamellar (MLVs) acetazolamide liposomes consisting of egg phosphatidylcholine (PC) and(More)
Curcumin and its derivatives; curcuminoids have been proven as potential remedies in different diseases. However, their delivery carries several challenges owing to their poor aqueous solubility, photodegradation, chemical instability, poor bioavailability and rapid metabolism. This review explores and criticizes the numerous attempts that were adopted(More)
The purpose of this study was to develop poloxamer-based in situ gelling formulations of ciprofloxacin hydrochloride (HCl) aiming at prolonging corneal contact time, controlling drug release, enhancing ocular bioavailability, and increasing patient compliance. The in situ forming gels were prepared using different concentrations of poloxamer 407 (P407) and(More)
This research determined the uptake of individual components of topically applied microemulsions into the stratum corneum (SC) and assessed their molecular effects on skin barrier function. The microemulsions comprised oleic acid, Tween20, Transcutol and water. The effects of selected formulations, and of the individual components, on the conformational(More)