Samantha Messina

Learn More
To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%-4% of the cells generated a(More)
Phosphatidylinositol 3-kinase (PI3K) is necessary for thyroid stimulating hormone (TSH)-induced cell cycle progression. To determine the molecular mechanism linking PI3K to TSH, we have identified a serine residue in p85αPI3K phosphorylated by protein kinase A (PKA) in vitro and in vivo. Expression of an alanine mutant (p85A) abolished cyclic(More)
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that activates Src family kinases via SH2- and SH3-mediated interactions. Specific FAK isoforms (FAK+), responsive to depolarization and neurotransmitters, are enriched in neurons. We analyzed the interactions of endogenous FAK+ and recombinant FAK+ isoforms containing amino acid insertions(More)
We describe the use of phage libraries to derive new antibodies against p21Ras to be used for intracellular expression in mammalian cells. A panel of single-chain antibody fragments, binding to Ras, were analyzed and characterized for their capacity to interfere in vitro with (a) the intrinsic GTPase activity of Ras and (b) the binding of Ras to its(More)
Resistance to chemotherapy is a common feature of malignant gliomas. This resistance is mediated by receptor tyrosine kinase (RTK)-regulated signaling. p21-Ras protein is pivotal in the propagation of the signal originated from many RTKs. Our aim was to investigate whether inhibition of Ras pathway affects the response to cisplatin in malignant gliomas. We(More)
Trophic deprivation contributes to astrocyte damage that occurs in acute and chronic neurodegenerative disorders. Unraveling the underlying mechanisms may pave way to novel cytoprotective strategies. Cultured mouse astrocytes responded to trophic deprivation with a large and transient increase in the expression of p21(ras), which was secondary to an(More)
Astrocytes, one of the predominant types of glial cells, function as both supportive and metabolic cells for the brain. Among mammalian tissues, the highest levels of p21Ras protein are detected in the brain. Here, we investigated the expression of KRAS and HRAS proto-oncogenes in primary astrocytes following acute oxidative stimulation. Reactive oxygen(More)
Addition of hydrogen peroxide to cultured astrocytes induced a rapid and transient increase in the expression of Ha-Ras and Ki-Ras. Pull-down experiments with the GTP-Ras-binding domain of Raf-1 showed that oxidative stress substantially increased the activation of Ha-Ras, whereas a putative farnesylated activated form of Ki-Ras was only slightly increased.(More)