Samantha J. Lavender

Learn More
The growth of populations is known to be influenced by dispersal, which has often been described as purely diffusive. In the open ocean, however, the tendrils and filaments of phytoplankton populations provide evidence for dispersal by stirring. Despite the apparent importance of horizontal stirring for plankton ecology, this process remains poorly(More)
Sun glint, the specular reflection of light from water surfaces, is a serious confounding factor for remote sensing of water column properties and benthos. This paper reviews current techniques to estimate and remove the glint radiance component from imagery. Methods for processing of ocean color images use statistical sea surface models to predict the(More)
Using the phytoplankton size-class model of Brewin et al. [Ecol. Model.221, 1472 (2010)], the two-population absorption model of Sathyendranath et al. [Int. J. Remote. Sens.22, 249 (2001)] and Devred et al. [J. Geophys. Res.111, C03011 (2006)] is extended to three populations of phytoplankton, namely, picophytoplankton, nanophytoplankton, and(More)
Deriving maps of phytoplankton taxa based on remote sensing data using bio-optical properties of phytoplankton alone is challenging. A more holistic approach was developed using artificial neural networks, incorporating ecological and geographical knowledge together with ocean color, bio-optical characteristics, and remotely sensed physical parameters.(More)
Changes in phytoplankton dynamics influence marine biogeochemical cycles, climate processes, and food webs, with substantial social and economic consequences. Large-scale estimation of phytoplankton biomass was possible via ocean colour measurements from two remote sensing satellites - the Coastal Zone Colour Scanner (CZCS, 1979-1986) and the Sea-viewing(More)
Spectral measurements of remote-sensing reflectance (Rrs) and absorption coefficients carried out in three European estuaries (Gironde and Loire in France, Tamar in the UK) are presented and analyzed. Typical Rrs and absorption spectra are compared with typical values measured in coastal waters. The respective contributions of the water constituents, i.e.,(More)
Several environmental/physical variables derived from satellite and in situ data sets were used to understand the variability of coccolithophore abundance in the subarctic North Atlantic. The 7-yr (1997–2004) time-series analysis showed that the combined effects of high solar radiation, shallow mixed layer depth (,20 m), and increased temperatures explained(More)
DIONYSIOS E. RAITSOS1,2,3*, ANTHONY WALNE1, SAMANTHA J. LAVENDER2,4, PRISCILLA LICANDRO1, PHILIP C. REID1,2 AND MARTIN EDWARDS1,2 1 SIR ALISTER HARDY FOUNDATION FOR OCEAN SCIENCE (SAHFOS), THE LABORATORY, CITADEL HILL, PLYMOUTH PL1 2PB, UK, MARINE INSTITUTE, PLYMOUTH UNIVERSITY, DRAKE CIRCUS, PLYMOUTH PL4 8AA, UK, RED SEA RESEARCH CENTRE, KING ABDULLAH(More)
Field determinations of the remote sensing reflectance signal are necessary to validate ocean color satellite sensors. The measurement of the above-water downwelling irradiance signal Ed(0+) is commonly made with a reference plaque of a known reflectance. The radiance reflected by the plaque (L(dspec)) can be used to determine Ed(0+) if the plaque is(More)
Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water(More)