Learn More
A map of 30,181 human gene-based markers was assembled and integrated with the current genetic map by radiation hybrid mapping. The new gene map contains nearly twice as many genes as the previous release, includes most genes that encode proteins of known function, and is twofold to threefold more accurate than the previous version. A redesigned, more(More)
A key challenge in evolutionary biology is to understand how new morphologies can arise through changes in gene regulatory networks. For example, floral asymmetry is thought to have evolved many times independently from a radially symmetrical ancestral condition, yet the molecular changes underlying this innovation are unknown. Here, we address this problem(More)
It is now widely accepted that global climate change is affecting many ecosystems around the globe and that its impact is increasing rapidly. Many studies predict that impacts will consist largely of shifts in latitudinal and altitudinal distributions. However, we demonstrate that the impacts of global climate change in the tropical rainforests of(More)
In a previous study on Arabidopsis thaliana suspension cells transiently infected with the microtubule end binding protein AtEB1a-green fluorescent protein (GFP), we reported that interphase microtubules grow from multiple sites dispersed over the cortex, with plus ends forming the characteristic comet-like pattern. In this study, AtEB1a-GFP was used to(More)
The uptake in vitro of glucose (Glc)-6-phosphate (Glc-6-P) into plastids from the roots of 10- to 14-d-old pea (Pisum sativum L. cv Puget) plants was inhibited by oleoyl-coenzyme A (CoA) concentrations in the low micromolar range (1--2 microM). The IC(50) (the concentration of inhibitor that reduces enzyme activity by 50%) for the inhibition of Glc-6-P(More)
When the sewage fungus Leptomitus lacteus was grown in liquid culture aerobically and then transferred to medium containing long-chain fatty acids, it produced a number of oxygenated fatty acids. From linoleic acid (18:2n-6), the major metabolite produced was R-8-hydroxy-9Z,12Z-octadecadienoic acid (8R-HODE), with additional quantities of 8,11-di-HODE,(More)
Plant-cell expansion is controlled by cellulose microfibrils in the wall with microtubules providing tracks for cellulose synthesizing enzymes. Microtubules can be reoriented experimentally and are hypothesized to reorient cyclically in aerial organs, but the mechanism is unclear. Here, Arabidopsis hypocotyl microtubules were labelled with AtEB1a-GFP(More)
A major challenge in biology is to understand how buds comprising a few cells can give rise to complex plant and animal appendages like leaves or limbs. We address this problem through a combination of time-lapse imaging, clonal analysis, and computational modeling. We arrive at a model that shows how leaf shape can arise through feedback between early(More)
The effects of long-chain acyl-CoA (lcACoA) esters (both added exogenously and synthesized de novo) and acyl-CoA binding protein (ACBP) on plastidial glucose 6-phosphate (Glc6P) and pyruvate metabolism were examined using isolated plastids. The binding of lcACoA esters by ACBP stimulated the utilization of Glc6P for fatty acid synthesis, starch synthesis(More)
Tasmanian devil joeys, like other marsupials, are born at a very early stage of development, prior to the development of their adaptive immune system, yet survive in a pathogen-laden pouch and burrow. Antimicrobial peptides, called cathelicidins, which provide innate immune protection during early life, are expressed in the pouch lining, skin and milk of(More)